首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation of unconjugated and glycine- and taurine-conjugated bile acids with a C-3 oxo group has been carried out by high-performance liquid chromatography on a reversed-phase column. The chromatographic behaviour of these 3-oxobile acids was dependent on the number and positions of hydroxyl groups and the structure of the side-chain. The newly developed method has been applied to the characterization of 3-oxobile acids in biological fluids. The bile acid fraction was obtained from a serum specimen by passing it through a Sep-Pak C18 cartridge. 3-Oxobile acids were derivatized quantitatively to fluorescent oximes through the oxo group by treatment with O-(2-anthrylmethyl)hydroxylamine. The derivatives were separated into the unconjugated and glycine- and taurine-conjugated fractions by ion-exchange chromatography on a lipophilic gel, piperidinohydroxypropyl Sephadex LH-20. Subsequent resolution of each fraction into individual 3-oxobile acids was achieved by chromatography on a Nova-Pak Phenyl column using 3% methanol in 0.3% potassium phosphate buffer (pH 7.0)-acetonitrile (8:5, v/v) as the mobile phase. The derivatized 3-oxobile acids were monitored by fluorescence detection (excitation wavelength 260 nm and emission wavelength 405 nm), the limit of detection being 20 fmol. Glycine- and taurine-conjugated 7 alpha,12 alpha-dihydroxy- and 7 alpha-hydroxy-3-oxo-5 beta-cholanoic acids in human serum were unambiguously idenitified on the basis of their chromatographic behaviour using mobile phases of different pH values.  相似文献   

2.
Abstract

The separation and characterization of C-25 epimers of unconjugated and glycine- and taurine-conjugated 3α, 7α, 12α - trihydroxy-5β-cholestanoic acid (THCA) in biological fluids by high-performance liquid chromatography (HPLC) are described. The 5β-cholestanoic acid fraction was obtained from a urine specimen from a patient with Zellweger syndrome by passing it through a Sep-pak C18 cartridge. Bile acids were derivatized quantitatively into the fluorescent compounds through the hydroxyl group at C-3 by treatment with 1-anthroyl nitrile. The derivatives were separated into the unconjugated, glycine- and taurine-conjugated fractions by ion-exchange chromatography on alipophilicgel, piperidinohydroxypropyl Sephadex LH-20. Sub-sequent resolution of each fractionin to (25s)- and (25R)-THCA was attained by HPLC on a Cosmosil 5C column. The C-25 epimers of unconjugated and conjugated Tk%A were unequivocally identified on the b asis of the irbehaviors in HPLC using mobile phases of different pHs. The ratios of the unconjugated, glycine- and taurine-conjugated (25RbTHCA to the corresponding (25S)-epimers were 16:1, 5:4 and 3:2, respectively .  相似文献   

3.
A method for the determination of 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) in human urine by gas chromatography (GC) in combination with negative ion chemical ionization (NICI) mass spectrometry is described. Unconjugated, glycine- and taurine-conjugated DHCA and THCA labelled with 18O and 2H were used as internal standards. 5 beta-Cholestanoic acids in urine were extracted with a Sep-Pak C18 cartridge, separated into the unconjugated, glycine- and taurine-conjugated fractions by ion-exchange chromatography on piperidinohydroxypropyl Sephadex LH-20 and, following alkaline hydrolysis of conjugated forms, derivatization into the pentafluorobenzyl ester-dimethylethylsilyl ethers. Subsequent resolution of each fraction into DHCA and THCA was attained by GC on a cross-linked 5% phenylmethylsilicone fused-silica capillary column where 5 beta-cholestanoic acids were monitored with a characteristic carboxylate anion [M-181]- in the NICI mode using isobutane as a reagent gas. The method was applied to separation and determination of 5 beta-cholestanoic acids in urine from a patient with Zellweger syndrome and from healthy volunteers.  相似文献   

4.
A new method for the extraction of bile acids from human plasma using acetonitrile precipitation of plasma protein and subsequent use of Bond-Elut C18 cartridges is described. After extraction the bile acids can be separated into three fractions: unconjugated, glycine-, and taurine-conjugated, using Sep-Pak SIL cartridges at 4 degrees C, eluting with ethanol--chloroform--water--glacial acetic acid mixtures. These extraction and fractionation procedures were evaluated in terms of recovery, reproducibility and resolution between the fractions. All these parameters were found to be satisfactory. Although the reproducibility of fractionation on Sep-Pak SIL cartridges was found to vary between batches, this did not give rise to significant difficulties. Plasmas from normals and patients with hepatobiliary disease were analysed by capillary gas-liquid chromatography after extraction and fractionation using the procedure described.  相似文献   

5.
Detection and determination of bile acids and their glycine- and taurine-conjugated derivatives are realized by reversed-phase liquid chromatography either directly or after ion-pair formation. Operating conditions and the relation between capacity factors and structure are investigated. The determination of bile acids extracted from biological samples is possible by these techniques.  相似文献   

6.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method has been developed and validated for purity determination of two bile acids, ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA). Quantitation of related impurities such as lithocholic acid (LCA), chenodeoxycholic acid (CDCA), cholic acid (CA), and DCA in UDCA and CA in DCA was performed. A running buffer containing 20 mM borate-phosphate, 50 mM sodium dodecyl sulfate (SDS), 2.0 mM beta-cyclodextrin, and acetonitrile was used. Modifiers were added to improve resolution and selectivity. The applied voltage was 25 kV and detection was performed at 185 nm. Validation parameters such as selectivity, linearity, repeatability, intermediate precision, limit of detection, limit of quantitation, and robustness were evaluated. The method was simple and proved to be useful for the purity testing of bile acids in bulk drugs. Good results were obtained for related impurities at concentration levels from 0.05 to 1.5% with respect to the main component, according to international requirements.  相似文献   

7.
A rapid method has been developed for the simultaneous separation of the polar glycine- and taurine-conjugated bile acids by packed-column supercritical fluid chromatography. Samples were analysed on a cyanopropyl-bonded silica column with ultraviolet detection at 210 nm and carbon dioxide modified with methanol as the mobile phase. The influence of the stationary phase, modifier concentration, temperature, column pressure and modifier identity on retention was also studied. This new chromatographic method is applicable to the assay of conjugated bile acids in duodenal bile samples from patients with hepatobiliary diseases.  相似文献   

8.
A thin-layer chromatography technique is described that permits separation of each class of bile lipid, such as cholesterol, free (unconjugated) bile acids, glycine- and taurine-conjugated bile acids and phospholipids, in a single run. The use of silica gel G-aluminium pre-coated sheets facilitates further processing, such as the extraction in situ of each class of separated bile lipids for determination by conventional methods.  相似文献   

9.
An effective method has been developed for quantitative determination of six bile acids including lithocholic acid (LCA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), hydodeoxycholic acid (HDCA), cholic acid (CA) and ursodeoxycholic acid (UDCA) in biological tissues including pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization/tandem mass spectrometry (GC-CI/MS/MS). Camphor-10-sulphonic acid (CSA) was proposed as effective catalyst for bile acid derivatization. Reactions were accelerated ultrasonically. The effects of different catalysts and reaction times on derivatization efficiency were evaluated and optimized. Bile acids were determined as methyl ester-trimethylsilyl ether and methyl ester-acetate derivatives. The efficiency of trimethylsilylation and acetylation was evaluated. Trimethylsilylation was done with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as the trimethylsilyl donating reagent in a ultrasonic bath for 20 min. Acetylation was done in pyridine with acetic anhydride at 40-45°C for 4 h. The former reaction was faster than the latter. Thus, trimethylsilylation was employed for the quantitative analysis. Negligible interferences from sterols in biological matrices were observed when the biological samples were treated with solid phase extraction before GC-CI/MS/MS. The linearity, reproducibility, detection limit and recovery were evaluated under the optimized conditions. Satisfactory results were obtained when bile acid derivatives of LCA, CDCA, HDCA, and UDCA were determined with total ion chromatograms (TIC) while DCA and CA were determined with extracted ion chromatograms (EIC), respectively. The detection limits (S/N=3) for six bile acids in biological tissues were ranging from 0.40 to 1.6 ng/mL and the recoveries indicated that the proposed method was feasible for the determination of trace bile acids in the biological samples studied. The experimental results for the animal tissues purchased from five different markets were compared. Interestingly, all of the six bile acids were present in pig liver while only the dihydroxy bile acids, DCA, CDCA and HDCA were found in pig kidney. In addition to DCA and CDCA, trihydroxy bile acid, CA, are the major bile acids in bovine liver.  相似文献   

10.
This study investigated the pollution characteristics, exposure levels and health risk assessments of seven kinds of biogenic amines (BAs) in eight varieties of canned sea fish products (n = 131) on the Chinese market. Carbon spheres QuEChERS mixed dispersion solid phase extraction combined with HPLC was used for the classification and analysis of batch samples. The average recovery of single BAs obtained by this method is 92.3~97.7%, and the relative standard deviation is 1.9~4.8%. Different varieties of samples have different degrees of pollution, the mass concentration of single BAs range 0.45~27.74 mg/kg, and the total concentration of ΣBAs range 18.77~368.50 mg/kg, of which the concentration of Σ4BAs range 11.53~368.50 mg/kg. The composition of four BAs is mainly putrescine, cadaverine, histamine and tyramine, which always play an important role in the exposure level and risk assessment of samples. The exposure level of BAs in the human body ranges 67.03~209.52 μg∙kg−1∙d−1. The health risk assessment shows that the gender trend of exposure risk level of BAs is male > female (young age), female > male (middle and old age), the age trend is young age > old age > middle age, and the regional trend is city > countryside. The food safety index of BAs in samples is 0.0062~0.0195, which is far less than 1, so the risk is within the controllable range.  相似文献   

11.
侯玉洁  祝文君  陈长功  王彦  段志军  阎超 《色谱》2015,33(4):383-388
探索了乙型肝炎患者和健康人血清代谢组的差异,寻找与疾病相关的潜在标志物。收集乙肝患者30例、健康对照35例,以气相色谱-质谱联用技术作为研究平台,应用主成分分析、正交偏最小二乘法-判别分析进行模式识别,然后通过变量重要性因子、非参数检验,结合数据库检索筛选鉴定有差异的代谢物。确认10个代谢物存在显著差异,其中柠檬酸、乌头酸、谷氨酰胺、N,N-二甲基甘氨酸、丙二酸与乙型肝炎患者组的相关性较好,受试者工作特征曲线下面积为0.975,具有较好的特异度和敏感度。因此这5个代谢物能够作为潜在的区分乙型肝炎患者和正常人的血清小分子标志物,有助于进一步了解病理机制,确定治疗目标。  相似文献   

12.
An in situ derivatization solid-phase microextraction (SPME) method has been developed for the determination of the trichloroethylene (TCE) metabolites, trichloroacetic acid (TCA), dichloroacetic acid (DCA) and trichloroethanol (TCOH), in rat blood. The analytical procedure involves derivatization of TCA and DCA to their ethyl esters with acidic ethanol, headspace sampling using SPME, and gas chromatography/negative chemical ionization mass spectrometry (GC/NCI-MS) determination. Parameters affecting both derivatization efficiency and the headspace SPME procedure, such as the concentration of sulfuric acid, amount of ethanol, derivatization-extraction temperature and time, sample preheating time, agitator speed and desorption conditions, were optimized. The method showed good linearity over the range of 1-1000 ng/mL in rat blood for each metabolite with correlation coefficients (R(2)) higher than 0.99. The intra-day and inter-day precision and accuracy were less than 10%. The relative recoveries for all analytes were greater than 84%. Validation results demonstrated that selected ion monitoring of the (35)Cl and (37)Cl isotopes using NCI resulted in reliable and sensitive quantitation of all three TCE metabolites. This validated method was successfully applied to study the toxicokinetic behavior of TCE metabolites following a 1 mg/kg oral dose of TCE.  相似文献   

13.
Diet-related obesity is associated with increased intestinal hyperpermeability. High dietary fat intake causes an increase in colonic bile acids (BAs), particularly deoxycholic acid (DCA). We hypothesize that DCA modulates the gene expression of multiple cell junction pathways and increases intestinal permeability. With a human Caco-2 cell intestinal model, we used cell proliferation, PCR array, biochemical, and immunofluorescent assays to examine the impact of DCA on the integrity of the intestinal barrier and gene expression. The Caco-2 cells were grown in monolayers and challenged with DCA at physiological, sub-mM, concentrations. DCA increased transcellular and paracellular permeability (>20%). Similarly, DCA increased intracellular reactive oxidative species production (>100%) and accompanied a decrease (>40%) in extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. Moreover, the mRNA levels of 23 genes related to the epithelial barrier (tight junction, focal adhesion, gap junction, and adherens junction pathways) were decreased (>40%) in (0.25 mM) DCA-treated Caco-2 cells compared to untreated cells. Finally, we demonstrated that DCA decreased (>58%) the protein content of occludin present at the cellular tight junctions and the nucleus of epithelial cells. Collectively, DCA decreases the gene expression of multiple pathways related to cell junctions and increases permeability in a human intestinal barrier model.  相似文献   

14.
Trichloroethylene (TCE) and some of its metabolites are potentially carcinogenic compounds that the general population is commonly exposed to in drinking water. Concentrations of TCE, dichloroacetic acid (DCA) and trichloroacetic acid (TCA) given to laboratory animals in cancer bioassays are high, whereas drinking water levels of the compounds are very low. It is not clear whether the trace amounts of TCE, DCA and TCA in drinking water pose a cancer risk to humans. The accuracy of pharmacokinetic studies relies on the analytical method from which blood and tissue concentration data are obtained. Models that extrapolate cancer risks of TCE and its metabolites from laboratory animals to humans, in turn, rely on the results of pharmacokinetic studies. Therefore, it is essential to have reliable analytical methods for the analysis of TCE and its metabolites. This paper reviews the methods currently in the literature for the analysis of TCE, DCA, TCA and, to a lesser extent, chloral hydrate (CH). Additional aspects of analytical methods such as method validation, species preservation and future directions in the analysis of TCE and its metabolites are also discussed.  相似文献   

15.
Characterizing the metabolic changes pertaining to hepatocellular carcinoma (HCC) in patients with liver cirrhosis is believed to contribute towards early detection, treatment, and understanding of the molecular mechanisms of HCC. In this study, we compare metabolite levels in sera of 78 HCC cases with 184 cirrhotic controls by using ultra performance liquid chromatography coupled with a hybrid quadrupole time-of-flight mass spectrometry (UPLC–QTOF MS). Following data preprocessing, the most relevant ions in distinguishing HCC cases from patients with cirrhosis are selected by parametric and non-parametric statistical methods. Putative metabolite identifications for these ions are obtained through mass-based database search. Verification of the identities of selected metabolites is conducted by comparing their MS/MS fragmentation patterns and retention time with those from authentic compounds. Quantitation of these metabolites is performed in a subset of the serum samples (10 HCC and 10 cirrhosis) using isotope dilution by selected reaction monitoring (SRM) on triple quadrupole linear ion trap (QqQLIT) and triple quadrupole (QqQ) mass spectrometers. The results of this analysis confirm that metabolites involved in sphingolipid metabolism and phospholipid catabolism such as sphingosine-1-phosphate (S-1-P) and lysophosphatidylcholine (lysoPC 17:0) are up-regulated in sera of HCC vs. those with liver cirrhosis. Down-regulated metabolites include those involved in bile acid biosynthesis (specifically cholesterol metabolism) such as glycochenodeoxycholic acid 3-sulfate (3-sulfo-GCDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA). These results provide useful insights into HCC biomarker discovery utilizing metabolomics as an efficient and cost-effective platform. Our work shows that metabolomic profiling is a promising tool to identify candidate metabolic biomarkers for early detection of HCC cases in high risk population of cirrhotic patients.  相似文献   

16.
The aim of this study was to characterize the serum metabolic profiles of patients with Alzheimer’s disease (AD) and amnestic mild cognitive impairment (AMCI) using metabolomics based on gas chromatography–mass spectrometry (GC/MS). Serum samples were collected from patients with AD (n = 30) and AMCI (n = 32), and normal healthy controls (NOR, n = 40). Metabolite profiles were performed with GC/MS in conjunction with multivariate statistical analysis, and possible biomarker metabolites were identified. Thirty-one kinds of endogenous metabolites could be identified simultaneously. Eleven components were chosen as biomarker metabolites between AD and NOR groups, and these metabolites were closely related to seven biological pathways: arginine and proline metabolism, phenylalanine metabolism, β-alanine metabolism, primary bile acid synthesis, glutathione metabolism, starch and sucrose metabolism, and steroid hormone biosynthesis. Meanwhile, 10 components were chosen as biomarker metabolites between AMCI and NOR groups and seven biological pathways were closely related: arginine and proline metabolism, phenylalanine metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, taurine and hypotaurine metabolism, starch and sucrose metabolism, and steroid hormone biosynthesis. Our study distinguished serum metabotypes between AD, AMCI and NOR patients successfully. The implementation of this metabolomic strategy may help to develop biochemical insight into the metabolic alterations in AD/AMCI and will be helpful for the further understanding of pathogenesis.  相似文献   

17.
A method for the determination of individual free and conjugated bile acids in serum using microcolumn liquid chromatography coupled with a laser-induced fluorescence detector is described. Bile acids are separated into free/glycine-conjugate and taurine-conjugate fractions using a Sep-Pak SIL cartridge. The taurine-conjugated bile acid fraction is subjected to enzymatic hydrolysis. Subsequently, free and conjugated bile acids are labeled using 4-(bromomethyl)-7-methoxycoumarin as a fluorogenic reagent, producing stable derivatives that can be excited by the 325 nm line of a He/Cd laser. Prior to their fluorimetric detection, the individual components of a bile acid serum profile are separated by reversed-phase microcolumn liquid chromatography.  相似文献   

18.
This study used gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and ultra-performance liquid chromatography-quadrupole TOFMS (UPLC-QTOFMS) metabonomic analytical techniques in combination with bioinformatics and pattern recognition analysis methods to analyze the serum metabolite profiling of hepatitis B virus (HBV)–induced liver cirrhosis patients with minimal hepatic encephalopathy (MHE), to find the specific biomarkers of MHE, to reveal the pathogenesis of MHE, and to determine a promising approach for early diagnosis of MHE. Serum samples of 100 normal controls (NC group), 29 HBV-induced liver cirrhosis patients with MHE (MHE group), and 24 HBV-induced liver cirrhosis patients without MHE [comprising 12 cases of compensated cirrhosis (CS group) and 12 cases of decompensated cirrhosis (DS group)] were collected and employed into GC-TOFMS and UPLC-QTOFMS platforms for serum metabolite detection; the outcome data were then analyzed using principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA). There were no significant differential metabolites between the NC group and the CS group. A series of key differential metabolites were detected. According to the variable influence in projection values and P-values, 60 small-molecule metabolites were considered to be dysregulated in the MHE group (compared to the NC group); 27 of these 60 dysregulated differential metabolites were considered to be the potential biomarkers (see Table 4, marked in bold); 66 small-molecule metabolites were considered to be dysregulated in the DS group (compared to the NC group); 34 of these 66 dysregulated differential metabolites were considered to be the potential biomarkers (see Table 5, marked in bold). According to the fold-change values, 9 of these 27 metabolites, namely valine, oxalic acid, erythro-sphingosine, 4,7,10,13,16,19-docosahexaenoic acid, isoleucine, allo-isoleucine, thyroxine, rac-octanoyl carnitine, and tocopherol (vitamin E), were downregulated in the MHE group (compared to the NC group); the other 18, namely adenine, glycochenodeoxycholic acid, fucose, allothreonine, glycohyocholic acid, glycoursodeoxycholic acid, tyrosine, taurocheno-deoxycholate, phenylalanine, 2-hydroxy-3-methyl-butanoic acid, hydroxyacetic acid, taurocholate, sorbitol, rhamnose, tauroursodeoxycholate, tolbutamide, pyroglutamic acid, and malic acid, were upregulated; 6 of these 34 metabolites were downregulated in the DS group (compared to the NC group), and the other 28 were upregulated, as shown in Table 5. (a) GC-TOFMS and UPLC-QTOFMS metabonomic analytical platforms can detect a range of metabolites in the serum; this might be of great help to study the pathogenesis of MHE and may provide a new approach for the early diagnosis of MHE. (b) Metabonomics analysis in combination with pattern recognition analysis might have great potential to distinguish the HBV-induced liver cirrhosis patients who have MHE from the normal healthy population and HBV-induced liver cirrhosis patients without MHE.  相似文献   

19.
The binding site of glycyrrhizin (GLZ) on human serum albumin was detected through competitive displacement experiments with GLZ and ibuprofen (IBU) (diazepam site), warfarin (WAR), salicylate (SAL) (digitoxin site), or deoxycholic acid (DCA) by means of an ultrafiltration technique. The specific binding of GLZ was subject to competitive inhibition by IBU, WAR, SAL, or DCA (1 or 4 mM). The extent of displacement was in the order of: DCA greater than IBU greater than WAR greater than SAL. Conversely, the specific bindings of WAR and DCA and the low-affinity bindings of IBU and SAL were subject to competitive inhibition by GLZ (1 or 4 mM). The extent of inhibition by GLZ was in the order of DCA greater than IBU greater than WAR not equal to SAL. In addition, the low-affinity IBU binding and the specific DCA binding showed mutual competitive inhibition at 4 mM, with almost identical displacements. It was concluded that the specific GLZ binding site on human serum albumin may be located mostly within the low-affinity IBU binding site area (probably the same as the specific DCA binding site area) and partially within the specific WAR binding site area and the low-affinity SAL binding site area.  相似文献   

20.
Metabolomics has been shown to be an effective tool for disease diagnosis, biomarker screening and characterization of biological pathways. A total of 140 subjects were included in this study; urine metabolomes of patients with liver cirrhosis (LC, n = 40), patients with hepatocellular carcinoma (HCC; n = 55) and healthy male subjects (n = 45) as a control group were studied. Gas chromatography/mass spectrometry‐based urine metabolomics profiles were investigated for all participants. Diagnostic models were constructed with a combination of marker metabolites, using principal components analysis and receiver operator characteristic curves. A total of 57 peaks could be auto‐identified of which 13 marker metabolites (glycine, serine, threonine, proline, urea, phosphate, pyrimidine, arabinose, xylitol, hippuric acid, citric acid, xylonic acid and glycerol) were responsible for the separation of HCC group from healthy subjects. Also, eight markers metabolites (glycine, serine, threonine, proline, citric acid, urea, xylitol and arabinose) showed significant differences between the LC group and healthy subjects. No significant difference was detected between HCC and LC groups regarding all these metabolites. Metabolomic profile using GC–MS established an optimized diagnostic model to discriminate between HCC patients and healthy subjects; also it could be useful for diagnosis of LC patients. However, it failed to differentiate between HCC and LC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号