首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Piezochromic materials with pressure-dependent photoluminescence tuning properties are important in many fields, such as mechanical sensors, security papers, and storage devices. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials (CPMs) with structural dynamics and tunable photophysical properties, are suitable for designing piezochromic materials, but there are few related studies. Herein, we report two dynamic three-dimensional COFs based on aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ) chromophores, termed JUC-635 and JUC-636 (JUC=Jilin University China), and for the first time, study their piezochromic behavior by diamond anvil cell technique. Due to the various luminescent groups, JUC-635 has completely different solvatochromism and molecular aggregation behavior in the solvents. More importantly, JUC-635 with AIE effect exhibits a sustained fluorescence upon pressure increase (≈3 GPa), and reversible sensitivity with high-contrast emission differences (Δλem=187 nm) up to 12 GPa, superior to other CPMs reported so far. Therefore, this study will open a new gate to expand the potential applications of COFs as exceptional piezochromic materials in pressure sensing, barcoding, and signal switching.  相似文献   

2.
氧还原反应(ORR)是能进行能量存储的核心电化学过程。由于它的动力学速率缓慢,因此亟需制备出高活性的电催化剂来促进这一反应的速率。二维共价有机框架材料(2D COFs)的π-π堆积结构可赋予骨架高导电率,并且一维有序的孔道有利于促进中间反应体传输。因此,其在可再生能源领域中具有良好的应用前景,并有望作为能量存储与转化的强大催化平台。本文通过向2D COFs中引入金属卟啉单元及硫醚单元成功制备了两个2D COFs (JUC-600和JUC-601)。通过多种表征手段证明,这两个2D COFs均具有AA堆积的sql拓扑结构。通过电化学测试表明,Co2+配位的JUC-601具有更正的ORR起始电势(0.825 V)和半波电势(0.7 V)、更高的活性表面积(7.8 mF/cm2),更低的Tafel斜率(58 mV/dec)。这主要是由于JUC-601的高比表面积和高孔隙率使得中间产物能更易在COFs的表面和孔道中接触和传输。此外,Co2+-卟啉单元以及硫醚单元的存在使其骨架整体的电子结构发生了变化,更有利于电子转移。这一工作不仅开发了新的二维卟啉-硫醚基COFs材料,同时也拓展了2D COFs材料在电催化领域的应用。  相似文献   

3.
共价有机框架(COFs)在电催化析氧反应(OER)中的应用得到了广泛的关注。然而,大多数无金属共价有机框架(COFs)的导电性较差,不利于OER反应。四硫富瓦烯(TTF)是一种良好的电子供体,具有快速的电子转移能力,将TTF整合到共价有机框架骨架中将有助于电子的转移。在此,我们报道了一种基于四硫富瓦烯的二维无金属共价有机框架材料,JUC-630。与不含四硫富瓦烯的同类材料(Etta-Td COF)相比,JUC-630具有较低的过电位(400 mV)和塔菲尔斜率(104 mV∙dec−1)。本研究提出了合理设计功能基元的策略,这有助于大大提高COF材料的OER催化活性。  相似文献   

4.
采用室温离子热法合成了一种氟取代的具有五重贯穿金刚石拓扑结构的三维共价有机骨架材料(COFs), 记为JUC-515. 与高温溶剂热法不同的是, 室温离子液体法具有反应温度和压力低、 反应时间短、 操作简单、 无需催化剂和不产生有机蒸汽污染等优势. 制备的材料具有高度结晶性、 较大的孔隙率和良好的CO2选择性吸附性能.  相似文献   

5.
合成了一种新型的二维介孔共价有机框架(COF)材料JUC-573.粉末X射线衍射、氮气吸附-脱附和热重等表征结果表明合成的COF材料具有高结晶度、高比表面积以及良好的热稳定性.在333 K、常压条件下,该材料表现出优异的碘吸附能力,且吸附量高达4.15 g/g.这是由于在JUC-573中规则定向的垂直一维介孔孔道能够有效地避免碘吸附后的堵塞,从而优化了材料的吸附能力. JUC-573可多次循环用于气态碘的捕获且保持几乎不变的吸附量.  相似文献   

6.
Covalent organic frameworks (COFs) have attracted extensive interest due to their unique structures and various applications. However, structural diversities are still limited, which greatly restricts the development of COF materials. Herein, we report two unusual cubic (8-connected) building units and their derived 3D imine-linked COFs with bcu nets, JUC-588 and JUC-589. Owing to these unique building blocks with different sizes, the obtained COFs can be tuned to be microporous or mesoporous structures with high surface areas (2728 m2 g−1 for JUC-588 and 2482 m2 g−1 for JUC-589) and promising thermal and chemical stabilities. Furthermore, the high selectivity of CO2/N2 and CO2/CH4, excellent H2 uptakes, and efficient dye adsorption are observed. This research thus provides a general strategy for constructing stable 3D COF architectures with adjustable pores via improving the valency of rigid building blocks.

Two unusual cubic (8-connected) building units and their derived 3D imine-linked COFs based on bcu nets have been designed and synthesized, which demonstrates highly crystalline structures, excellent surface areas, and large pore sizes.  相似文献   

7.
通过后修饰的方法,在共价有机框架(COFs)材料JUC-500的孔道中引入光敏性的偶氮苯小分子,合成了具有光热刺激响应的共价有机框架材料JUC-501.在紫外线和加热作用下,孔道中的偶氮苯会发生可逆的顺-反异构变化,对染料污染物甲基橙(MO)表现出优异的可逆吸附与释放性能.  相似文献   

8.
Imine-based covalent organic frameworks (COFs) are crystalline porous materials with prospective uses in various devices. However, general bulk synthetic methods usually produce COFs as powders that are insoluble in most of the common organic solvents, arising challenges for the subsequent molding and fixing of these materials on substrates. Here, we report a novel synthetic methodology that utilizes an electrogenerated acid (EGA), which is produced at an electrode surface by electrochemical oxidation of a suitable precursor, acting as an effective Brønsted acid catalyst for imine bond formation from the corresponding amine and aldehyde monomers. Simultaneously, it provides the corresponding COF film deposited on the electrode surface. The COF structures obtained with this method exhibited high crystallinities and porosities, and the film thickness could be controlled. Furthermore, such process was applied for the synthesis of various imine-based COFs, including a three-dimensional (3D) COF structure.  相似文献   

9.
Oxygen reduction reaction(ORR) is a significant reaction for energy conversion systems(such as fuel cells, metal-air batteries, etc.). It is an urgent need to develop cheap, durable and highly-active catalysts for efficient ORR. Hence, we report a metal-free nitrogen and sulfur co-doped porphyrin-based covalent organic framework(COF) as a high-efficiency ORR catalyst[the onset potential(Eo) is 0.79 V and the half-wave potential(E1/2) is 0.70 V]. The double doping of N and S atoms causes uneven charge distribution around carbon atoms, which can act as catalytic active centers, improving ORR activity. Compared with single-atom doping, double atoms doping exhibits a higher activity due to the synergistic effect between different elements. These results demonstrate that reasonable design of stable metal-free COFs with a high electrochemical activity can promote their wide applications.  相似文献   

10.
The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493 mW cm−2. DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.  相似文献   

11.
Single site catalysts(SSCs) are a new type of heterogeneous catalysts formed by isolated metal atoms supported on kinds of substrates. SSCs have shown great potential for energy conversion and storage in recent years, especially for oxygen reduction reactions(ORR). Typically, SSCs are confined on the substrate by strong chemical interactions, such as coordination bonds. Therefore, the surface chemical environment and porous properties of the supports are crucial to the performance of SSCs. In recent years, COFs have become excellent candidates for preparing SSCs as they can precisely assemble monomers into highly ordered crystalline porous materials with a fine structure and definite components. In this review, we not only summarize the characteristics and advantages of COFs based SSCs, but also highlight the applications of COFs constructed from different single active sites for ORR in recent years. Finally, challenges in practical application, feasible strategies and perspectives are proposed for the of COFs based SSCs.  相似文献   

12.
Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI−COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI−COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.  相似文献   

13.
Metal-free covalent organic frameworks (COFs) have been employed to catalyze the oxygen reduction reaction (ORR). To achieve high activity and selectivity, various building blocks containing heteroatoms and groups linked by imine bonds were used to create catalytic COFs. However, the roles of linkages of COFs in ORR have not been investigated. In this work, the catalytic linkage engineering has been employed to modulate the catalytic behaviors. To create single catalytic sites while avoiding other possible catalytic sites, we synthesized COFs from benzene units linked by various bonds, such as imine, amide, azine, and oxazole bonds. Among these COFs, the oxazole-linkage in COFs enables to catalyze the ORR with the highest activity, which achieved a half-wave potential of 0.75 V and a limited current density of 5.5 mA cm−2. Moreover, the oxazole-linked COF achieved a conversion frequency (TOF) value of 0.0133 S−1, which were 1.9, 1.3, and 7.4-times that of azine-, amide- and imine-COFs, respectively. The theoretical calculation showed that the carbon atoms in oxazole linkages facilitated the formation of OOH* and promoted protonation of O* to form the OH*, thus advancing the catalytic activity. This work guides us on which linkages in COFs are suitable for ORR.  相似文献   

14.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   

15.
Radioactive iodine is a notorious pollutant in gas radioactive nuclear waste due to its radiation hazard, volatility, chemical toxicity, and high mobility. Therefore, developing a material with high efficiency-specific iodine capture is significant. Covalent organic framework(COF) has attracted significant attention as a new crystalline porous organic material. Due to its large specific surface and high chemical stability, it is an excellent alternative to adsorbents. Herein, we report a chemically stable two-dimensional COF(termed JUC-609) with specific adsorption of iodine. Adsorption experiments show that JUC-609 has an excellent iodine adsorption capacity as high as 5.9 g/g under 353 K and normal pressure condition, and iodine adsorption after multiple cycles is still maintained. Our study thus promotes the potential application of COFs in the field of environment-related applications.  相似文献   

16.
Organic lithium ion batteries (LIBs) are considered as one of the next-generation green electrochemical energy storage (EES) devices. However, obtaining both high capacity and long-term cyclability is still the bottleneck of organic electrode materials for LIBs because of weak structural and chemical stability and low conductivity. Covalent organic frameworks (COFs) show potential to overcome these problems owing to its good stability and high capacity. Herein, the synthesis and characterization of two π-conjugated COFs, derived from the Schiff-base reaction of 2,4,6-triaminopyrimidne (TM) respectively with 1,4-phthalaldehyde (PA) and 1,3,5-triformylbenzene (TB) by a mechanochemical process are presented. As anode materials for LIBs, the COFs exhibit favorable electrochemical performance with the highest reversible discharge capacities of up to 401.3 and 379.1 mAh g−1 at a high current density (1 A g−1), respectively, and excellent long-term cyclability with 74.8 and 72.7 % capacity retention after 2000 cycles compared to the initial discharge capacities.  相似文献   

17.
Highly efficient electrocatalysts derived from metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) for oxygen reduction reaction (ORR) have been developed. However, the subsequent pyrolysis is often needed owing to their poor intrinsic electrical conductivity, leading to undesirable structure changes and destruction of the original fine structure. Now, hybrid electrocatalysts were formed by self‐assembling pristine covalent organic polymer (COP) with reduced graphene oxide (rGO). The electrical conductivity of the hybridized COP/rGO materials is increased by more than seven orders of magnitude (from 3.06×10?9 to 2.56×10?1 S m?1) compared with pure COPs. The ORR activities of the hybrid are enhanced significantly by the synergetic effect between highly active COP and highly conductive rGO. This COP/rGO hybrid catalyst exhibited a remarkable positive half‐wave (150 mV).  相似文献   

18.
氧还原反应催化剂的性能直接影响着能源转换和存储器件如燃料电池和金属-空气电池的性能. 开发低成本、高性能的非铂族金属氧还原催化剂对于这类器件的实际应用和商业化十分重要,因此备受关注. 氮掺杂的石墨烯/碳纳米管复合物同时具备碳纳米管的良好导电性能和有利于传质的三维网络结构优点,以及氮掺杂石墨烯的高活性优点,因此有望发展为这类可替代铂族催化剂的氧还原电催化剂之一,但目前其催化性能还需进一步提高. 本文研究发现通过在氮掺杂石墨烯/碳纳米管复合物的过程中引入铁元素可以有效提高催化剂的氧还原活性,并且发现通过在热处理和氮掺杂过程中加入二氧化硅纳米颗粒及随后除去二氧化硅,可以在氮掺杂的石墨烯/碳纳米管复合物材料中有效地形成多孔结构. 这种多孔结构的形成不仅可以在复合物中引入更多的高活性催化位点,而且有利于暴露更多的催化活性位并促进氧还原反应中的传质过程. 结合碳纳米管、石墨烯和多孔结构的三者优点,所制备的多孔氮掺杂碳材料表现出优异的电催化氧还原性能. 进一步的实验表明,这类材料还表现出优异的抗甲醇中毒能力和良好的稳定性,因此在性能改进后有望用于燃料电池等能量转换与存储器件.  相似文献   

19.
Covalent organic frameworks(COFs) have received profound attention in recent years owing to their tailor-made porosity, large surface area and robust stability. More specifically, 2D COFs with redox-active and π electron-rich units allow efficient charge carriers hopping and ion migration, thus offering great potentials in energy storage. Herein, we present a systematic and concise overview of the recent advances in 2D COFs related to the electrochemical energy field, including supercapacitors, fuel cells, rechargeable lithium batteries, lithium-sulfur batteries, and other metal-ion batteries. In addition, a brief outlook is proposed on the challenges and prospects of COFs as electrode materials for energy storage.  相似文献   

20.
Covalent organic frameworks(COFs)are emerging as powerful electrochemical energy storage/conversion materials benefiting from the controlled pore and chemical structures,which are usually determined by the regulation of the molecular building blocks.In contrast,the substituents are not considered significant for the electrochemical reactivity as they are usually removed during carbonization,which is necessary for improving the electrical conductivity of an electrode material.Here we show that the substituents play key roles not only in synthesizing COFs but also in controlling the COF structures during carbonization and thus the related electrochemical reactivity.Five characteristic substituents were used when synthesizing a new COF structure and it was found that electron-withdrawing strength of the substituents significantly influences the crystallinity of the COFs by tuning the reactivity of building blocks,or even determines whether the crystalline COF can be constructed.Moreover,the differences in chemical groups,sizes,and thermal stabilities of the substituents result in varied pore-collapse behaviors and the structures of the carbonized COFs,which show diverse effects on the electrochemical performances.An optimal material shows the highest surface area of 2131 m2/g,rich pores around 1 nm,and the highest ratio of sp2 carbon among the samples,corresponding to the largest double-layer specific capacity over 125 F/g in an ionic liquid electrolyte,while another material with the lowest surface area and N-doping level exhibits a high H2O2 production selectivity over 80%through selective oxygen reduction.This study shows guiding significance for the design of building blocks and substituents for COFs and further the carbonized carbons,and also exhibits the great potential of substituent engineering in modulating the electrochemical reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号