首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that every bipartite graph with vertex classes of size n whose minimum degree is at least n/2 contains a perfect matching. We prove an analog of this result for hypergraphs. We also prove several related results that guarantee the existence of almost perfect matchings in r‐uniform hypergraphs of large minimum degree. Our bounds on the minimum degree are essentially best possible. © 2005 Wiley Periodicals, Inc. J Graph Theory 51: 269–280, 2006  相似文献   

2.
We consider the problem of finding in a graph a set R of edges to be colored in red so that there are maximum matchings having some prescribed numbers of red edges. For regular bipartite graphs with n nodes on each side, we give sufficient conditions for the existence of a set R with |R|=n+1 such that perfect matchings with k red edges exist for all k,0≤kn. Given two integers p<q we also determine the minimum cardinality of a set R of red edges such that there are perfect matchings with p red edges and with q red edges. For 3-regular bipartite graphs, we show that if p≤4 there is a set R with |R|=p for which perfect matchings Mk exist with |MkR|≤k for all kp. For trees we design a linear time algorithm to determine a minimum set R of red edges such that there exist maximum matchings with k red edges for the largest possible number of values of k.  相似文献   

3.
 Let P n be a set of n=2m points that are the vertices of a convex polygon, and let ℳ m be the graph having as vertices all the perfect matchings in the point set P n whose edges are straight line segments and do not cross, and edges joining two perfect matchings M 1 and M 2 if M 2=M 1−(a,b)−(c,d)+(a,d)+(b,c) for some points a,b,c,d of P n . We prove the following results about ℳ m : its diameter is m−1; it is bipartite for every m; the connectivity is equal to m−1; it has no Hamilton path for m odd, m>3; and finally it has a Hamilton cycle for every m even, m≥4. Received: October 10, 2000 Final version received: January 17, 2002 RID="*" ID="*" Partially supported by Proyecto DGES-MEC-PB98-0933 Acknowledgments. We are grateful to the referees for comments that helped to improve the presentation of the paper.  相似文献   

4.
In the last decade there have been many results about special families of graphs whose number of perfect matchings is given by perfect or near perfect powers (N. Elkies et al., J. Algebraic Combin. 1 (1992), 111–132; B.-Y. Yang, Ph.D. thesis, Department of Mathematics, MIT, Cambridge, MA, 1991; J. Propp, New Perspectives in Geometric Combinatorics, Cambridge University Press, 1999). In this paper we present an approach that allows proving them in a unified way. We use this approach to prove a conjecture of James Propp stating that the number of tilings of the so-called Aztec dungeon regions is a power (or twice a power) of 13. We also prove a conjecture of Matt Blum stating that the number of perfect matchings of a certain family of subgraphs of the square lattice is a power of 3 or twice a power of 3. In addition we obtain multi-parameter generalizations of previously known results, and new multi-parameter exact enumeration results. We obtain in particular a simple combinatorial proof of Bo-Yin Yang's multivariate generalization of fortresses, a result whose previously known proof was quite complicated, amounting to evaluation of the Kasteleyn matrix by explicit row reduction. We also include a new multivariate exact enumeration of Aztec diamonds, in the spirit of Stanley's multivariate version.  相似文献   

5.
We introduce a family of graphs, called cellular, and consider the problem of enumerating their perfect matchings. We prove that the number of perfect matchings of a cellular graph equals a power of 2 times the number of perfect matchings of a certain subgraph, called the core of the graph. This yields, as a special case, a new proof of the fact that the Aztec diamond graph of order n introduced by Elkies, Kuperberg, Larsen and Propp has exactly 2 n(n+1)/2 perfect matchings. As further applications, we prove a recurrence for the number of perfect matchings of certain cellular graphs indexed by partitions, and we enumerate the perfect matchings of two other families of graphs called Aztec rectangles and Aztec triangles.  相似文献   

6.
An induced matching in a graph is a set of edges whose endpoints induce a 1‐regular subgraph. It is known that every n‐vertex graph has at most  maximal induced matchings, and this bound is the best possible. We prove that every n‐vertex triangle‐free graph has at most  maximal induced matchings; this bound is attained by every disjoint union of copies of the complete bipartite graph K3, 3. Our result implies that all maximal induced matchings in an n‐vertex triangle‐free graph can be listed in time , yielding the fastest known algorithm for finding a maximum induced matching in a triangle‐free graph.  相似文献   

7.
Let G be a regular bipartite graph and . We show that there exist perfect matchings of G containing both, an odd and an even number of edges from X if and only if the signed graph , that is a graph G with exactly the edges from X being negative, is not equivalent to . In fact, we prove that for a given signed regular bipartite graph with minimum signature, it is possible to find perfect matchings that contain exactly no negative edges or an arbitrary one preselected negative edge. Moreover, if the underlying graph is cubic, there exists a perfect matching with exactly two preselected negative edges. As an application of our results we show that each signed regular bipartite graph that contains an unbalanced circuit has a 2‐cycle‐cover such that each cycle contains an odd number of negative edges.  相似文献   

8.
Heping Zhang 《Order》2010,27(2):101-113
Let G be a plane bipartite graph and M(G){\cal M}(G) the set of perfect matchings of G. A property that the Z-transformation digraph of perfect matchings of G is acyclic implies a partially ordered relation on M(G){\cal M}(G). It was shown that M(G){\cal M}(G) is a distributive lattice if G is (weakly) elementary. Based on the unit decomposition of alternating cycle systems, in this article we show that the poset M(G){\cal M}(G) is direct sum of finite distributive lattices if G is non-weakly elementary; Further, if G is elementary, then the height of distributive lattice M(G){\cal M}(G) equals the diameter of Z-transformation graph, and both quantities have a sharp upper bound é\fracn(n+2)4ù\lceil\frac{n(n+2)}{4}\rceil, where n denotes the number of inner faces of G.  相似文献   

9.
A graph is called unicyclic if it owns only one cycle. A matching M is called uniquely restricted in a graph G if it is the unique perfect matching of the subgraph induced by the vertices that M saturates. Clearly, μ r (G) ≤ μ(G), where μ r (G) denotes the size of a maximum uniquely restricted matching, while μ(G) equals the matching number of G. In this paper we study unicyclic bipartite graphs enjoying μ r (G) = μ(G). In particular, we characterize unicyclic bipartite graphs having only uniquely restricted maximum matchings. Finally, we present some polynomial time algorithms recognizing unicyclic bipartite graphs with (only) uniquely restricted maximum matchings.  相似文献   

10.
Extending known results for the unit disk, we prove that for the unit ball there exist n+2 different cases of commutative C*-algebras generated by Toeplitz operators, acting on weighted Bergman spaces. In all cases the bounded measurable symbols of Toeplitz operators are invariant under the action of certain commutative subgroups of biholomorphisms of the unit ball. This work was partially supported by CONACYT Projects 46936 and 44620, México.  相似文献   

11.
Matching graphs     
The matching graph M(G) of a graph G is that graph whose vertices are the maximum matchings in G and where two vertices M1 and M2 of M(G) are adjacent if and only if |M1M2| = 1. When M(G) is connected, this graph models a metric space whose metric is defined on the set of maximum matchings in G. Which graphs are matching graphs of some graph is not known in general. We determine several forbidden induced subgraphs of matching graphs and add even cycles to the list of known matching graphs. In another direction, we study the behavior of sequences of iterated matching graphs. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 73–86, 1998  相似文献   

12.
The Pfaffian method enumerating perfect matchings of plane graphs was discovered by Kasteleyn. We use this method to enumerate perfect matchings in a type of graphs with reflective symmetry which is different from the symmetric graphs considered in [J. Combin. Theory Ser. A 77 (1997) 67, MATCH—Commun. Math. Comput. Chem. 48 (2003) 117]. Here are some of our results: (1) If G is a reflective symmetric plane graph without vertices on the symmetry axis, then the number of perfect matchings of G can be expressed by a determinant of order |G|/2, where |G| denotes the number of vertices of G. (2) If G contains no subgraph which is, after the contraction of at most one cycle of odd length, an even subdivision of K2,3, then the number of perfect matchings of G×K2 can be expressed by a determinant of order |G|. (3) Let G be a bipartite graph without cycles of length 4s, s{1,2,…}. Then the number of perfect matchings of G×K2 equals ∏(1+θ2)mθ, where the product ranges over all non-negative eigenvalues θ of G and mθ is the multiplicity of eigenvalue θ. Particularly, if T is a tree then the number of perfect matchings of T×K2 equals ∏(1+θ2)mθ, where the product ranges over all non-negative eigenvalues θ of T and mθ is the multiplicity of eigenvalue θ.  相似文献   

13.
For a graph G, consider the pairs of edge-disjoint matchings whose union consists of as many edges as possible. Let H be the largest matching among such pairs. Let M be a maximum matching of G. We show that 5/4 is a tight upper bound for |M|/|H|.  相似文献   

14.
Tarakanov  V. E. 《Mathematical Notes》2001,69(3-4):411-420
The problem of efficient computation of maximum matchings in the n-dimensional cube, which is applied in coding theory, is solved. For an odd n, such a matching can be found by the method given in our Theorem 2. This method is based on the explicit construction (Theorem 1) of the maps of the vertex set that induce largest matchings in any bipartite subgraph of the n-dimensional cube for any n.  相似文献   

15.
Let {Gi} be the random graph process: starting with an empty graph G0 with n vertices, in every step i ≥ 1 the graph Gi is formed by taking an edge chosen uniformly at random among the nonexisting ones and adding it to the graph Gi ? 1. The classical “hitting‐time” result of Ajtai, Komlós, and Szemerédi, and independently Bollobás, states that asymptotically almost surely the graph becomes Hamiltonian as soon as the minimum degree reaches 2, that is if δ(Gi) ≥ 2 then Gi is Hamiltonian. We establish a resilience version of this result. In particular, we show that the random graph process almost surely creates a sequence of graphs such that for edges, the 2‐core of the graph Gm remains Hamiltonian even after an adversary removes ‐fraction of the edges incident to every vertex. A similar result is obtained for perfect matchings.  相似文献   

16.
P. Hall, [2], gave necessary and sufficient conditions for a bipartite graph to have a perfect matching. Koning, [3], proved that such a graph can be decomposed intok edge-disjoint perfect matchings if and only if it isk-regular. It immediately follows that in ak-regular bipartite graphG, the deletion of any setS of at mostk – 1 edges leaves intact one of those perfect matchings. However, it is not known what happens if we delete more thank – 1 edges. In this paper we give sufficient conditions so that by deleting a setS ofk + r edgesr 0, stillG – S has a perfect matching. Furthermore we prove that our result, in some sense, is best possible.  相似文献   

17.
LetH be a hexagonal system. TheZ-transformation graphZ(H) is a graph where the vertices are perfect matchings ofH and where two perfect matchings are joined by an edge provided their synimetric difference consists of six edges of a hexagon ofH. We prove that the connectivity ofZ(H) is equal to the minimum degree of vertices ofZ(H).Project supported by the National Natural Science Foundation of China.  相似文献   

18.
It is shown that in a 0-sum Boolean weighted graph G the sum of the weights taken over all the spanning trees equals the sum of the weights taken over all the perfect matchings in the graph Gv, where v is any vertex of G. Several related theorems are proved which include parity results on perfect matchings and spanning trees in Eulerian graphs. The ideas on perfect matchings in 0-sum Boolean weighted graphs are generalized to matchings in any Boolean weighted graph.  相似文献   

19.
We prove that if a convex body has an interior false pole with respect to some hyperplane, then the body is an ellipsoid. This research was partially carried out during the postdoctoral visit of this author at University College London, and it was supported by CONACYT, México.  相似文献   

20.
An induced matching of a graph G is a matching having no two edges joined by an edge. An efficient edge dominating set of G is an induced matching M such that every other edge of G is adjacent to some edge in M. We relate maximum induced matchings and efficient edge dominating sets, showing that efficient edge dominating sets are maximum induced matchings, and that maximum induced matchings on regular graphs with efficient edge dominating sets are efficient edge dominating sets. A necessary condition for the existence of efficient edge dominating sets in terms of spectra of graphs is established. We also prove that, for arbitrary fixed p≥3, deciding on the existence of efficient edge dominating sets on p-regular graphs is NP-complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号