首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
Linear triphenol H3[RO3] (2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-R-phenol; R = Me, tBu) was found to undergo selective mono-deprotonation and mono-O-methylation. Deprotonation of H3[RO3] with 1 equiv of nBuLi resulted in the formation of Li{H2[RO3]}(Et2O)2 (R = Me (1a), tBu (1b)), in which the central phenol unit was lithiated. Treatment of H3[RO3] with methyl p-toluenesulfonate in the presence of K2CO3 in CH3CN gave the corresponding anisol-diphenol H2[RO2O] (2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-R-anisole; R = Me (2a), tBu (2b)). Reaction of H2[RO2O] with 2 equiv of nBuLi gave the dilithiated derivatives Li2[RO2O]. The lithium salts were reacted with ZrCl4 in toluene/THF to obtain the dichloride complex [RO2O]ZrCl2(thf) (R = Me (3a), tBu (3b)). 3b underwent dimerization along with a loss of THF to generate {[tBuO2O]ZrCl2}2 (4), whereas 4 was dissolved in THF to regenerate the monomer 3b. Alkylation of 3 with MeMgBr, PhCH2MgCl, and Me3SiCH2MgCl gave [MeO2O]ZrMe2(thf) (5), [RO2O]Zr(CH2Ph)2 (R = Me (6a), tBu (6b)), and [tBuO2O]Zr(CH2SiMe3)2 (7), respectively. Reaction of 3b with LiBHEt3 produced the hydride-bridged dimer [Li2(thf)4Cl]{[tBuO3]Zr}2(micro-H)3} (8), in which demethylation of the dianionic [tBuO2O] ligand took place to give the trianionic [tBuO3] ligand. The X-ray crystal structures of 1b, 2a, 3a, 4, 6a, and 7 were reported.  相似文献   

2.
Eight new compounds based on [O3PCH2PO3]4- ligands and {MoV2O4} dimeric units have been synthesized and structurally characterized. Octanuclear wheels encapsulating various guests have been isolated with different counterions. With NH4+, a single wheel was obtained, as expected, with the planar CO32- guest, (NH4)12[(MoV2O4)4(O3PCH2PO3)4(CO3)2].24H2O (1a), while with the pyramidal SO32- guest, only the syn isomer (NH4)12[(MoV2O4)4(O3PCH2PO3)4(SO3)2].26H2O (2a) was characterized. The corresponding anti isomer was obtained with Na+ as counterions, Na12[(MoV2O4)4(O3PCH2PO3)4(SO3)2]39H2O (2b), and with mixed Na+ and NH4(+) counterions, Na+(NH4)11[(MoV2O4)4(O3PCH2PO3)4(SO3)2].13H2O (2d). With [O3PCH2PO3]4- extra ligands, the octanuclear wheel Li12(NH4)2[(MoV2O4)4(O3PCH2PO3)4(HO3PCH2PO3)2].31H2O (4a) was isolated with Li+ and NH4+ counterions and Li14[(MoV2O4)4(O3PCH2PO3)4(HO3PCH2PO3)2].34H2O (4c) as a pure Li+ salt. A new rectangular anion, formed by connecting two MoV dimers and two MoVI octahedra via methylenediphosphonato ligands with NH4+ as counterions, (NH4)10[(MoV2O4)2(MoVIO3)2(O3PCH2PO3)2(HO3PCH2PO3)2].15H2)O (3a), and Li9(NH4)2Cl[(MoV2O4)2(MoVIO3)2(O3PCH2PO3)2]. 22H2O (3d) as a mixed NH4+ and Li+ salt have also been synthesized. The structural characterization of the compounds, combined with a study of their behavior in solution, investigated by 31P NMR, has allowed a discussion on the influence of the counterions on the structure of the anions and their stability. Density functional theory calculations carried out on both isomers of the [(MoV2O4)4(O3PCH2PO3)4(SO3)2]12- anion (2), either assumed isolated or embedded in a continuum solvent model, suggest that the anti form is favored by approximately 2 kcal mol(-1). Explicit insertion of two solvated counterions in the molecular cavity reverses this energy difference and reduces it to less than 1 kcal mol(-1), therefore accounting for the observed structural versatility.  相似文献   

3.
p-tert-Butylcalix[4]arene, [CalixBut(OH)4], reacts with Mo(PMe3)6 and W(PMe3)4(eta2-CH2PMe2)H to yield compounds of composition {[CalixBut(OH)2(O)2]M(PMe3)3H2} which exhibit unprecedented use of a C-H bond of a calixarene methylene group as a binding functionality in the form of agostic and alkyl hydride derivatives. Thus, X-ray diffraction studies demonstrate that, in the solid state, the molybdenum complex [CalixBut(OH)2(O)2]Mo(PMe3)3H2 exists as an agostic derivative with a Mo...H-C interaction, whereas the tungsten complex exists as a metallated trihydride [Calix-HBut(OH)2(O)2]W(PMe3)3H3. Solution 1H NMR spectroscopic studies, however, provide evidence that [Calix-HBut(OH)2(O)2]W(PMe3)3H3 is in equilibrium with its agostic isomer [CalixBut(OH)2(O)2]W(PMe3)3H2. Dynamic NMR spectroscopy also indicates that the [M(PMe3)3H2] fragments of both the molybdenum and tungsten complexes [CalixBut(OH)2(O)2]M(PMe3)3H2 migrate rapidly around the phenolic rim of the calixarene on the NMR time scale, an observation that is in accord with incorporation of deuterium into the methylene endo positions upon treatment of the isomeric mixture of [CalixBut(OH)2(O)2]W(PMe3)3H2 and [Calix-HBut(OH)2(O)2]W(PMe3)3H3 with D2. Treatment of {[CalixBut(OH)2(O)2]W(PMe3)3H2} with Ph2C2 gives the alkylidene complex [CalixBut(O)4]W=C(Ph)Ar [Ar = PhCC(Ph)CH2Ph].  相似文献   

4.
Gao HL  Yi L  Zhao B  Zhao XQ  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5980-5988
The self-assembly of 4-hydroxypyridine-2,6-dicarboxylic acid (H(3)CAM) and pyridine-2,6-dicarboxylic acid (H2PDA) with Zn(II) salts under hydrothermal conditions gave two novel coordination polymers {[Zn(HCAM)].H2O}n (1) and {[Zn(PDA)(H2O)(1.5)]}n (1a). 1 and 1a comprise of a 2D (4,4) net and a 1D zigzag chain, respectively, in which a new coordination mode of PDA is found. The reactions of H(3)CAM and H2PDA with Nd2O3 in the M/L ratio 2:3 gave {[Nd2(HCAM)3(H2O)4].2H2O}n (2) and {[Nd(2)(PDA)3(H2O)(3)].0.5H2O}n (2a). In 2, a square motif as a building block constructed by four Nd(III) ions was further assembled into a highly ordered 2D (4,4) grid. 2a is a 3D microporous coordination polymer. It is interesting to note that, when Ln(III) salts rather than oxides were employed, the reaction produced {[Ln(CAM)(H2O)3].H2O}n (Ln = Gd, 3; Dy, 4; Er, 5) for H(3)CAM and {[Gd2(PDA)3(H2O)3].H2O}n (3a) for H2PDA. 3-5 are 2D coordination polymers with a 3(3)4(2) uniform net, where hydroxyl groups of H3CAM coordinate with metal ions. The reaction of H3CAM and Er2O3 instead of Er(ClO4)3 produced {[Er2(HCAM)3(H2O)4].2H2O}n (6). The compounds 2a and 3a, 2 and 6 are isomorphous. The stereochemical and supramolecular effects of hydroxyl groups result in the dramatic structural changes from 1D (1a) to 2D (1) and from 2D (2) to 3D (2a). When Ln(III) salts instead of Ln2O3 were employed in the hydrothermal reactions with H(3)CAM, different self-assembly processes gave the products of different metal/ligand ratio with reactants (3-5).  相似文献   

5.
Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.  相似文献   

6.
The chloro and azido complexes trans-[PdCl(4-C5NF4)(PiPr3)2] (3) and trans-[Pd(N3)(4-C5NF4)(PiPr3)2] (4) can be prepared by reaction of [PdF(4-C5NF4)(PiPr3)2] (2) with Et3SiCl or MeSiN3, respectively. In contrast, reactions of 2 with Ph3SiH or Me2FSiSiFMe2 give the products of reductive elimination 2,3,5,6-tetrafluoropyridine (5) or 4-(fluorodimethylsilyl)tetrafluoropyridine (6) as well as [Pd(PiPr3)2] (1). In a catalytic experiment, pentafluoropyridine can be converted with Ph3SiH into 5 in 62% yield, when 10% of 2 is employed as catalyst. Treatment of trans-[PdF(4-C5NF4)(PiPr3)2] (2) with Bu3SnCH=CH2 in THF at 50 degrees C results in the formation of [Pd(PiPr3)2] (1) and 4-vinyltetrafluoropyridine (7). Complex 2 is also active as a catalyst towards a Stille cross-coupling reaction of pentafluoropyridine with Bu3SnCH=CH2 to give 4-vinyltetrafluoropyridine (7) with a TON of 6. The molecular structure of the complex 3 has been determined by X-ray crystallography.  相似文献   

7.
To provide a solid chemical basis for the mechanistic interpretations of the thio effects observed for large ribozymes, the cleavage of triribonucleoside 3',3',5'-phosphoromonothioate triesters and diribonucleoside 3',3'-phosphorodithioate diesters has been studied. To elucidate the role of the neighboring hydroxy group of the departing 3'-linked nucleoside, hydrolysis of 2',3'-O-methyleneadenosin-5'-yl bis[5'-O-methyluridin-3'-yl] phosphoromonothioate (1 a) has been compared to the hydrolysis of 2',3'-O-methyleneadenosin-5'-yl 5'-O-methyluridin-3'-yl 2',5'-di-O-methyluridin-3'-yl phosphoromonothioate (1 b) and the hydrolysis of bis[uridin-3'-yl] phosphorodithioate (2 a) to the hydrolysis of uridin-3'-yl 2',5'-di-O-methyluridin-3'-yl phosphorodithioate (2 b). The reactions have been followed by RP HPLC over a wide pH range. The phosphoromonothioate triesters 1 a,b undergo two competing reactions: the starting material is cleaved to a mixture of 3',3'- and 3',5'-diesters, and isomerized to 2',3',5'- and 2',2',5'-triesters. With phosphorodithioate diesters 2 a,b, hydroxide-ion-catalyzed cleavage of the P--O3' bond is the only reaction detected at pH >6, but under more acidic conditions desulfurization starts to compete with the cleavage. The 3',3'-diesters do not undergo isomerization. The hydroxide-ion-catalyzed cleavage reaction with both 1 a and 2 a is 27 times as fast as that compared with their 2'-O-methylated counterparts 1 b and 2 b. The hydroxide-ion-catalyzed isomerization of the 3',3',5'-triester to 2',3',5'- and 2',2',5'-triesters with 1 a is 11 times as fast as that compared with 1 b. These accelerations have been accounted for by stabilization of the anionic phosphorane intermediate by hydrogen bonding with the 2'-hydroxy function. Thio substitution of the nonbridging oxygens has an almost negligible influence on the cleavage of 3',3'-diesters 2 a,b, but the hydrolysis of phosphoromonothioate triesters 1 a,b exhibits a sizable thio effect, k(PO)/k(PS)=19. The effects of metal ions on the rate of the cleavage of diesters and triesters have been studied and discussed in terms of the suggested hydrogen-bond stabilization of the thiophosphorane intermediates derived from 1 a and 2 a.  相似文献   

8.
[reaction: see text] Lipase-catalyzed resolution of (2R*,3S*)-3-methyl-3-phenyl-2-aziridinemethanol, (+/-)-2, at low temperatures gave synthetically useful (2R,3S)-2 and its acetate (2S,3R)-2a with (2S)-selectivity (E = 55 at -40 degrees C), while a similar reaction of (2R*,3R*)-3-methyl-3-phenyl-2-aziridinemethanol, (+/-)-3, gave (2S,3S)-3 and its acetate (2R,3R)-3a with (2R)-selectivity (E = 73 at -20 degrees C). Compound (+/-)-2 was prepared conveniently via diastereoselective addition of MeMgBr to tert-butyl 3-phenyl-2H-azirine-2-carboxylate, (+/-)-1a, which was successfully prepared by the Neber reaction of oxime tosylate of tert-butyl benzoyl acetate 7a. The tert-butyl ester was requisite to promote this reaction. For determination of the absolute configuration of (2S,3R)-2a, enantiopure (2S,3R)-2 was independently prepared in three steps involving diastereoselective methylation of 3-phenyl-2H-azirine-2-methanol, (S)-10, with MeMgBr. The absolute configuration of (2S,3S)-3 was determined by X-ray analysis of the corresponding N-(S)-2-(6-methoxy-2-naphthyl)propanoyl derivative (S,S,S)-13.  相似文献   

9.
High-level electronic structure calculations have been used to construct portions of the potential energy surfaces related to the reaction of diborane with ammonia and ammonia borane (B2H6 + NH3 and B2H6 + BH3NH3)to probe the molecular mechanism of H2 release. Geometries of stationary points were optimized at the MP2/aug-cc-pVTZ level. Total energies were computed at the coupled-cluster CCSD(T) theory level with the correlation-consistent basis sets. The results show a wide range of reaction pathways for H2 elimination. The initial interaction of B2H6 + NH3 leads to a weak preassociation complex, from which a B-H-B bridge bond is broken giving rise to a more stable H3BHBH2NH3 adduct. This intermediate, which is also formed from BH3NH3 + BH3, is connected with at least six transition states for H2 release with energies 18-93 kal/mol above the separated reactants. The lowest-lying transition state is a six-member cycle, in which BH3exerts a bifunctional catalytic effect accelerating H2 generation within a B-H-H-N framework. Diborane also induces a catalytic effect for H2 elimination from BH3NH3 via a three-step pathway with cyclic transition states. Following conformational changes, the rate-determining transition state for H2 release is approximately 27 kcal/mol above the B2H6 + BH3NH3 reactants, as compared with an energy barrier of approximately 37 kcal/mol for H2 release from BH3NH3. The behavior of two separated BH3 molecules is more complex and involves multiple reaction pathways. Channels from diborane or borane initially converge to a complex comprising the H3BHBH2NH3adduct plus BH3. The interaction of free BH3 with the BH3 moiety of BH3NH3 via a six-member transition state with diborane type of bonding leads to a lower-energy transition state. The corresponding energy barrier is approximately 8 kcal/mol, relative to the reference point H3BHBH2NH3 adduct + BH3. These transition states are 27-36 kcal/mol above BH3NH3 + B2H6, but 1-9 kcal/mol below the separated reactants BH3NH3 + 2 BH3. Upon chemical activation of B2H6 by forming 2 BH3, there should be sufficient internal energy to undergo spontaneous H2 release. Proceeding in the opposite direction, the H2 regeneration of the products of the B2H6 + BH3NH3reaction should be a feasible process under mild thermal conditions.  相似文献   

10.
Shen YL  Jiang HL  Xu J  Mao JG  Cheah KW 《Inorganic chemistry》2005,44(25):9314-9321
Solid state reactions of lanthanide oxide, MoO3 and SeO2 (or TeO2) at high temperature in an evacuated quartz tube lead to four new Ln-Mo-Se(Te)-O quaternary phases with four different types of structures, namely, Nd2MoSe2O10, Gd2MoSe3O12, La2MoTe3O12, and Nd2MoTe3O12. The structure of Nd2MoSe2O10 features a 3D architecture built by the intergrowth of the Nd-Se-O layers with the Nd-Mo-O layers. The structure of Gd2MoSe3O12 contains a 3D network of gadolinium selenite with the MoO6 octahedra occupying the cavities of the structure. The structure of La2MoTe3O12 features a 3D network of La2(Te3O8)2+ with the tunnels along the a axis occupied by the MoO4 tetrahedra. Nd2MoTe3O12 features a 2D layer built by the lanthanide ions interconnected by tellurite groups and ditellurite groups, with the MoO4 tetrahedra as the interlayer pendant groups. Room temperature and low temperature luminescent studies indicate that Nd2MoSe2O10 and Nd2MoTe3O12 exhibit strong luminescence in the near-IR region.  相似文献   

11.
The compound Fe[N(SiMe 3) 2] 2 is shown to be a useful precursor to dinuclear and trinuclear iron-sulfur-silylamido complexes by reaction with thiols or thiols and sulfur in tetrahydrofuran (THF) or toluene. Reaction with 1 equiv of p-tolylthiol affords [Fe 2(mu 2-S- p-tol) 2(N(SiMe 3) 2) 2(THF) 2] ( 1); with 0.5 equiv of adamantane-1-thiol, [Fe 2(mu 2-S-1-Ad)(mu 2-N(SiMe 3) 2)(N(SiMe 3) 2) 2] ( 2) is formed. The clusters [Fe 3(mu 3-Q)(mu 2-SR) 3(N(SiMe 3) 2) 3] are available by three methods: (i) self-assembly in the systems Fe[N(SiMe 3) 2] 2/RSH/S or Se [Q = S, R = p-tol ( 3) and 1-Ad ( 5)]; (ii) reaction of 1 with Q = S or Se to yield 3 or [Fe 3Se(S- p-tol) 3(N(SiMe 3) 2) 3] ( 4); (iii) reaction of 2 with 1-AdSH and S to give 5. Structures of 1- 5 are presented. Complexes 1 and 2 contain planar Fe 2S 2 and Fe 2SN rhombs. Clusters 3- 5 contain a mixed-valence Fe 3Q(SR) 3 core with trigonal (cuboidal) geometry. Of known iron-sulfur clusters, these most closely resemble previously reported [Fe 3S(S-R-S) 3] (2-) stabilized by bidentate thiolate ligands. Complexes 1- 5, together with a small set of recently described clusters of nuclearities 2, 4, and 8, constitute a new class of iron-sulfur-silylamido clusters. Complexes 3- 5 constitute a new structure type of mixed-valence iron-sulfur clusters.  相似文献   

12.
The haloform reaction of 3-acetyltropolone ( 1 ) afforded 3-carboxytropolone ( 2 ) which was treated with diazomethane to give 2-methoxy-3-methoxycarbonyltropone (3a) and 2-methoxy-7-methoxycarbonyltropone (3b). The tropolone 2 reacted with hydrazine to afford 2-hydrazino-3-hydrazinocarbonyltropone ( 10 ) or 2-hydrazinotropone ( 11 ), depending on the reaction time. The reaction of 2 with phenylhydrazine produced 3-hydroxy-1-phenyl-1,8-dihydrocycloheptapyrazol-8-one (14). The treatment of 2-methoxy-3-methoxycarbonyltropone (3a) with hydrazine or phenylhydrazine gave cyclization products 12 and 15 , respectively. The reaction of 2-methoxy-7-methoxycarbonyltropone (3b) with hydrazine, phenylhydrazine, or methylhydrazine gave 2-hydrazino- ( 13 ), 2-(2-phenylhydrazino)- ( 16 ), and 2-(2-methylhydrazino)-7-methoxycarbonyltropone ( 17 ), respectively.  相似文献   

13.
Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.  相似文献   

14.
This paper reports a pH-dependent H2-activation [H2 (pH 1-4) --> H+ + H- (pH -1) --> 2H+ + 2e-] promoted by CpIr complexes [Cp = eta5-C5(CH3)5]. In a pH range of about 1-4, an aqueous HNO3 solution of [CpIr(III)(H2O)3]2+ (1) reacts with 3 equiv of H2 to yield a solution of [(CpIr(III))2(mu-H)3]+ (2) as a result of heterolytic H2-activation [2[1] + 3H2 (pH 1-4) --> [2] + 3H+ + 6H2O]. The hydrido ligands of 2 display protonic behavior and undergo H/D exchange with D+: [M-(H)3-M]+ + 3D+ <==>[M-(D)3-M]+ + 3H+ (where M = CpIr). Complex 2 is insoluble in a pH range of about -0.2 (1.6 M HNO3/H2O) to -0.8 (6.3 M HNO3/H2O). At pH -1 (10 M HNO3/H2O), a powder of 2 drastically reacts with HNO3 to give a solution of [CpIr(III)(NO3)2] (3) with evolution of H2, NO, and NO2 gases. D-labeling experiments show that the evolved H2 is derived from the hydrido ligands of 2. These results suggest that oxidation of the hydrido ligands of 2 [[2] + 4NO3- (pH -1) --> 2[3] + H2 + H+ + 4e-] couples to reduction of NO3- (NO3- --> NO2- --> NO). To complete the reaction cycle, complex 3 is transformed into 1 by increasing the pH of the solution from -1 to 1. Therefore, we are able to repeat the reaction cycle using 1, H2, and a pH gradient between 1 and -1. A conceivable mechanism for the H2-activation cycle with reduction of NO3- is proposed.  相似文献   

15.
The new bitopic, bis(1-pyrazolyl)methane-based ligand o-C6H4[CH2OCH2CH(pz)2]2 (L2, pz = pyrazolyl ring) is prepared from the reaction of (pz)2CHCH2OH (obtained from the reduction of (pz)2CHCOOH with BH3.S(CH3)2) with NaH, followed by the addition of alpha,alpha'-dibromo-o-xylene. The reaction of L2 with AgPF6 or AgO3SCF3 yields {o-C6H4[CH2OCH2CH(pz)2]2(AgPF6)}n or {o-C6H4[CH2OCH2CH(pz)2]2(AgO3SCF3)}n, respectively. Both compounds in the solid state have tetrahedral silver(I) centers arranged in a 1D coordination polymer network. The analogous ligand based on tris(1-pyrazolyl)methane units, o-C6H4[CH2OCH2C(pz)3]2 (L3), reacts with AgO3SCF3 to form a similar coordination polymer, {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)}n. In this case, each tris(pyrazolyl)methane unit in L3 adopts the kappa2-kappa0 bonding mode. Crystallization of a 3:1 mixture of AgO3SCF3 and L3 yields {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)2}n, in which the tris(1-pyrazolyl)methane units adopt a kappa2-kappa1 coordination mode.  相似文献   

16.
The reaction of solutions of Fe(Pyac)3 [PyacH=3-(4-pyridyl)-2,4-pentanedione] and AgNO3 produces two types of porous mixed-metal-organic frameworks (M'MOFs). With lower AgNO3 concentrations, the product (M'MOF1) has a 2D honeycomb structure with Ag:Fe=1:1 and pores of ca. 12x16 A. When a higher concentration of AgNO3 is employed, however, the product (M'MOF2) has Ag:Fe=3:2 and a porous 1D ladder structure. A variety of nonpolar solvents serve as guests in M'MOF2: with 1,2-C6H4Cl2, [AgNO3]3[Fe(Pyac)3]2(1,2-C6H4Cl2)5.5 (M'MOF2a); with C6H5Br, [AgNO3]3[Fe(Pyac)3]2(C6H5Br)6 (M'MOF2b). M'MOFs 2a and 2b can be interconverted by treatment with the appropriate solvent, in single-crystal-to-single-crystal transformations.  相似文献   

17.
An important step in developing ionic-liquid-based electrolytes for lithium rechargeable batteries is obtaining a molecular-level understanding of the ionic interactions that occur in these systems. In this study, 1-ethyl-3-methylimidazolium trifluoromethansulfonate ([C2mim]CF3SO3) is complexed with LiCF3SO3, and the local structures of the CF3SO3- and [C2mim]+ ions are investigated with infrared and Raman spectroscopy. The isolation and subsequent refinement of a Li[C2mim](CF3SO3)2 crystal provides further insight into the structure of the [C2mim]CF3SO3-LiCF3SO3 solutions. Minor changes are observed in the infrared and Raman spectra of dilute [C2mim]CF3SO3-LiCF3SO3 solutions compared to pure [C2mim]CF3SO3. However, a suspension of very small Li[C2mim](CF3SO3)2 crystallites forms at a solution composition of [C2mim]CF3SO3:LiCF3SO3 = 10:1 (mole ratio), placing an upper limit on the solubility of LiCF3SO3. Essentially no changes are observed in the vibrational modes of the [C2mim]+ cations over the entire range of LiCF3SO3 compositions studied, suggesting that the addition of these compounds does not significantly perturb the local structure of the [C2mim]+ cations. The salt used in this study has a common anion with the ionic liquid; thus, the ion cloud surrounding the [C2mim]+ ions, which must be primarily composed of CF3SO3- anions, is not significantly altered with the addition of LiCF3SO3.  相似文献   

18.
采用炭硬模板法制备了高比表面积Cr2O3-α-AIF3催化剂.该催化剂的合成过程主要包括三步:(1)将一定浓度的蔗糖溶液浸渍到Cr203-y-Al2O3中,然后经过热处理,使得蔗糖分解为炭;(2)将含炭的Cr2O3-y-Al2O3固体在400℃用HF气体进行完全氟化;(3)在高温下利用燃烧法除去炭硬模板.对所制备的催化剂进行了X射线衍射(XRD),氮气吸脱附曲线,氨气程序升温脱附(NH3-TPD),透射电镜(TEM),扫描电镜(SEM)和X射线能量散射(EDX)技术表征.结果表明,氟化过程对Cr2O3-α-AIF3催化剂比表面积有重要影响,在最佳实验条件下,能够得到比表面积为115 m2·g-1的催化剂.此催化剂对催化裂解二氟乙烷(HFC-152a)制备氟乙烯(VF)的催化活性明显高于直接氟化制备的Cr2O3-α-AIF3催化剂,这是因为高比表面积的Cr2O3-α-AIF3催化剂具有较大的酸量.  相似文献   

19.
Reactions of the pyridine N-oxide ligands L, L2 and L3 with the silver acetylenediide-containing system under hydrothermal conditions gave rise to four silver-acetylenediide complexes bearing interesting C2@Agn motifs: (Ag2C2)2(AgCF3CO2)8(L1)3.5 (1), (Ag2C2)2(AgCF3CO2)8(L2)2 (2), (Ag2C2)(AgCF3CO2)4(L3) (3) and [(Ag7(C2)(CF3SO3)3(L3)2(H2O)2] x 2CF3SO3 (4) (L = nicotinic acid N-oxide, L(1) = pyridine N-oxide, L2 = 1,2-bis(4-pyridyl)ethane N,N'-dioxide, L3 = 1,3-bis(4-pyridyl)propane N,N'-dioxide), which exhibit new distorted polyhedral C2@Agn cage motifs. Complex 1 has a pair of acetylenediide dianions encapsulated in a Ag(14) aggregate composed of three polyhedral parts, whereas 2 contains an irregular (C2)2@Ag13 double cage. In 3, the basic building unit is a centrosymmetric (C2)2@Ag12 double cage with each component single cage taking the shape of a highly distorted triangulated dodecahedron with one missing vertex. As to complex 4, the core is a C2@Ag7 single cage in the form of a slightly distorted monocapped trigonal prism with four cleaved edges that include all three vertical sides. Furthermore, in the silver-rich environment, the pyO-type ligands are induced to exhibit unprecedented coordination modes, such as the mu(5)-O,O,O,O',O' ligation mode of L2 in 2 and the mu4-O,O,O',O' mode of L3 in 3 and 4.  相似文献   

20.
The preparations and spectroscopic characterisation of the hydrolytically unstable As(III) complexes, [AsF(3)(OPR(3))(2)] (R = Me or Ph) and [AsF(3){Me(2)P(O)CH(2)P(O)Me(2)}] are described and represent the first examples of complexes of AsF(3) with neutral ligands. The crystal structure of [AsF(3){Me(2)P(O)CH(2)P(O)Me(2)}] contains dimers with bridging diphosphine dioxide, but there are also long contacts between the dimers to neighbouring phosphine oxide groups, completing a very distorted six-coordination at arsenic and producing a weakly associated polymer structure. The reaction of AsF(3) with OAsPh(3) affords Ph(3)AsF(2), and no arsine oxide complex was formed. Reaction of SbF(3) with OER(3) (R = Me or Ph, E = P or As), Me(2)P(O)CH(2)P(O)Me(2) and Ph(2)P(O)(CH(2))(n)P(O)Ph(2) (n = 1 or 2) in MeOH produces [SbF(3)(OER(3))(2)], [SbF(3){Me(2)P(O)CH(2)P(O)Me(2)}] and [SbF(3){Ph(2)P(O)(CH(2))(n)P(O)Ph(2)}] respectively. The X-ray structures reveal that the complexes contain square pyramidal SbF(3)O(2) cores with apical F and cis disposed pnictogen oxides. However, whilst [SbF(3)(OER(3))(2)] (R = Ph: E = P or As; R = Me: E = As) and [SbF(3){Ph(2)P(O)CH(2)P(O)Ph(2)}] are monomeric, [SbF(3){Me(2)P(O)CH(2)P(O)Me(2)}] is a dimer with bridging diphosphine dioxides producing a twelve-membered ring, and [SbF(3){Ph(2)P(O)(CH(2))(2)P(O)Ph(2)}] is a chain polymer with diphosphine dioxide bridges. In the OAsR(3) reactions with SbF(3), R(3)AsF(2) are also formed. Notably the Sb-O(P) bonds are shorter than As-O(P), despite the covalent radii (As < Sb), consistent with very weak coordination of the AsF(3). IR and multinuclear ((1)H, (19)F and (31)P) NMR data are reported and discussed. BiF(3) does not react with pnictogen oxide ligands under similar conditions and halide exchange of bismuth chloro complexes with Me(3)SnF gave BiF(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号