首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glucose-6-phosphate dehydrogenase (G6PD) (EC 1.1.1.49) is an abun dant enzyme in Saccharomyces cerevisiae. This enzyme is of great interest as an analytical reagent because it is used in a large number of quantitative assays. A strain of S. cerevisiae was genetically modified to improve G6PD production during aerobic culture. The modifications are based on cloning the G6PD sequence under the control of promoters that are upregulated by the carbon source used for yeast growth. The results showed that S. cerevisiae acquired from a commercial source and the same strain produced by aerobic cultivation under controlled conditions provided very similar G6PD. However, G6PD production by genetically modified S. cerevisiae produced very high enzyme activity and showed to be the most effective procedure to obtain glucose-6-phosphate dehydrogenase. As a consequence, the cost of producing G6PD can be significantly reduced by using strains that contain levels of G6PD up to 14-fold higher than the level of G6PD found in commercially available strains.  相似文献   

3.
The gpdA-promoter-controlled exocellular production of glucose oxidase (GOD) by recombinant Aspergillus niger NRRL-3 (GOD3-18) during growth on glucose and nonglucose carbon sources was investigated. Screening of various carbon substrates in shake-flask cultures revealed that exocellular GOD activities were not only obtained on glucose but also during growth on mannose, fructose, and xylose. The performance of A. niger NRRL-3 (GOD3-18) using glucose, fructose, or xylose as carbon substrate was compared in more detail in bioreactor cultures. These studies revealed that gpdA-promoter-controlled GOD synthesis was strictly coupled to cell growth. The gpdA-promoter was most active during growth on glucose. However, the unfavorable rapid GOD-catalyzed transformation of glucose into gluconic acid, a carbon source not supporting further cell growth and GOD production, resulted in low biomass yields and, therefore, reduced the advantageous properties of glucose. The total (endo- and exocellular) specific GOD activities were lowest when growth occurred on fructose (only a third of the activity that was obtained on glucose), whereas utilization of xylose resulted in total specific GOD activities nearly as high as reached during growth on glucose. Also, the portion of GOD excreted into the culture fluid reached similar high levels (≅ 90%) by using either glucose or xylose as substrate, whereas growth on fructose resulted in a more pelleted morphology with more than half the total GOD activity retained in the fungal biomass. Finally, growth on xylose resulted in the highest biomass yield and, consequently, the highest total volumetric GOD activity. These results show that xylose is the most favorable carbon substrate for gpdA-promoter-controlled production of exocellular GOD.  相似文献   

4.
The fermentation characteristics of two recombinant strains of Zymomonas mobilis, viz. CP4 (pZB5) and ZM4 (pZB5), capable of converting both glucose and xylose to ethanol, have been characterized in batch and continuous culture studies. The strain ZM4 (pZB5) was found to be capable of converting a mixture of 65 g/L glucose and 65 g/L xylose to 62 g/L ethanol in 48h with a yield of 0.46 g/g. Higher sugar concentrations resulted in incompletexylose utilization (80h) presumably owing to ethanol inhibition of xylose assimilation or metabolism. The fermentation results with ZM4 (pZB5) show a significant improvement over results published previously for recombinant yeasts and other bacteria capable of glucose and xylose utilization.  相似文献   

5.
Zymomonas mobilis has been metabolically engineered to broaden its substrate utilization range to include d-xylose and l-arabinose. Both genomically integrated and plasmid-bearing Z. mobilis strains that are capable of fermenting the pentose d-xylose have been created by incorporating four genes: two genes encoding xylose utilization metabolic enzymes (xylA/xylB) and two genes encoding pentose phosphate pathway enzymes (talB/tktA). We have characterized the activities of the four newly introduced enzymes for xylose metabolism, along with those of three native glycolytic enzymes, in two different xylose-fermenting Z. mobilis strains. These strains were grown on glucose-xylose mixtures in computer-controlled fermentors. Samples were collected and analyzed to determine extracellular metabolite concentrations as well as the activities of several intracellular enzymes in the xylose and glucose uptake and catabolism pathways. These measurements provide new insights on the possible bottlenecks in the engineered metabolic pathways and suggest methods for further improving the efficiency of xylose fermentation.  相似文献   

6.
The glucose analog 2-deoxyglucose (2-DOG) has been used to obtain mutants depressed for pentose metabolism. Some researchers have used 2-DOG alone whereas others have used it in the presence of a glucose-repressible carbon source. We examined both methods and screened mutant strains for improved use of xylose in the presence of glucose. Pichia stipitis mutants selected for growth on d-xylose in the presence of 2-DOG used xylose from a 1∶1 glucose:xylose mixture more rapidly than did their parents. One of these mutants, FPL-DX26, completely consumed xylose in the presence of glucose and produced 33g/L ethanol in 45h from 80 g/L of this sugar mixture. Mutants selected for growth on 2-DOG alone did not show significant improvement. Selection for growth on d-xylose in the presence of 2-DOG has been useful in developing parental strains for further genetic manipulation. The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin-Madison. This article was prepared by U.S. Goverment employees on official time, and it is therefore in the public domain and not subject to copyright.  相似文献   

7.
d-Xylose is a major constituent of hemicellulose, which makes up 20–30% of renewable biomass in nature.d-Xylose can be fermented by most yeasts, includingSaccharomyces cerevisiae, by a two-stage process. In this process, xylose is first converted to xylulose in vitro by the enzyme xylose (glucose) isomerase, and the latter sugar is then fermented by yeast to ethanol. With the availability of an inexpensive source of xylose isomerase produced by recombinantE. coli, this process of fermenting xylose to ethanol can become quite effective. In this paper, we report that yeast xylose and xylulose fermentation can be further improved by cloning and overexpression of the xylulokinase gene. For instance, the level of xylulokinase activity in S.cerevisiae can be increased 230fold by cloning its xylulokinase gene on a high copy-number plasmid, coupled with fusion of the gene with an effective promoter. The resulting genetically-engineered yeasts can ferment xylose and xylulose more than twice as fast as the parent yeast.  相似文献   

8.
Two new ethanologenic strains (FBR4 and FBR5) of Escherichia coli were constructed and used to ferment corn fiber hydrolysate. The strains carry the plasmid pLO1297, which contains the genes from Zymomonas mobilis necessary for efficiently converting pyruvate into ethanol. Both strains selectively maintained the plasmid when grown anaerobically. Each culture was serially transferred 10 times in anaerobic culture with sugar-limited medium containing xylose, but noselective antibiotic. An average of 93 and 95% of the FBR4 and FBR5 cells, respectively, maintained pLO1297 in anaerobic culture. The fermentation performances of the repeatedly transferred cultures were compared with those of cultures freshly revived from stock in pH-controlled batch fermentations with 10% (w/v) xylose. Fermentation results were similar for all the cultures. Fermentations were completed within 60 h and ethanol yields were 86–92% of theoretical. Maximal ethanol concentrations were 3.9–4.2% (w/v). The strains were also tested for their ability to ferment corn fiber hydrolysate, which contained 8.5% (w/v) total sugars (2.0% arabinose, 2.8% glucose, and 3.7% xylose). E. coli FBR5 produced more ethanol than FBR4 from the corn fiber hydrolysate. E. coli FBR5 fermented all but 0.4% (w/v) of the available sugar, whereas strain FBR4 left 1.6% unconsumed. The fermentation with FBR5 was completed within 55 h and yielded 0.46 g of ethanol/g of available sugar, 90% of the maximum obtainable. Author to whom all correspondence and reprint requests should be addressed. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA im plies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

9.
This work describes a mediated amperometric method for simultaneous real-time probing of the NAD(P)H availability in two different phenotypes, fermentative and respiratory, of the phosphoglucose isomerase deletion mutant strain of S. cerevisiae, EBY44 [ENY.WA-1A pgi1-1D::URA3], and its parental strain, ENY.WA-1A. The developed method is based on multichannel detection using microelectrode arrays. Its versatility was demonstrated by using four microelectrode arrays for simultaneously monitoring the NAD(P)H availability of both geno- and phenotypes under the influence of two different carbon sources, glucose and fructose, as well as the cytosolic and mitochondrial inhibitor and uncoupler, dicoumarol. The obtained results indicate that the method is capable of accurately and reproducibly (overall relative standard error of mean 3.2%) mapping the real-time responses of the cells with different genotype–phenotype combinations. The ENY.WA cells showed the same response to glucose and fructose when dicoumarol was used; fermentative cells indicated the presence of cytosolic inhibition and respiratory cells a net effect of mitochondrial uncoupling. EBY44 cells showed cytosolic inhibition with the exception of respiratory cells when fructose was used as carbon source.  相似文献   

10.
This study compared the anaerobic catabolism of glucose and xylose by a patented, recombinant ethanologenicEscherichia coli B 11303:pLOI297 in terms of overall yields of cell mass (growth), energy (ATP), and end product (ethanol). Batch cultivations were conducted with pH-controlled stirred-tank bioreactors using both a nutritionally rich, complex medium (Luria broth) and a defined salts minimal medium and growth-limiting concentrations of glucose or xylose. The value of YATP was determined to be 9.28 and 8.19 g dry wt cells/mol ATP in complex and minimal media, respectively. Assuming that the nongrowth-associated energy demand is similar for glucose and xylose, the mass-based growth yield (Y x/s , g dry wt cells/g sugar) should be proportional to the net energy yield from sugar metabolism. The value ofY x/s was reduced, on average, by about 50% (from 0.096 g/g glu to 0.051 g/g xyl) when xylose replaced glucose as the growth-limiting carbon and energy source. It was concluded that this observation is consistent with the theoretical difference in net energy (ATP) yield associated with anaerobic catabolism of glucose and xylose when differences in the mechanisms of energy-coupled transport of each sugar are taken into account. In a defined salts medium, the net ATP yield was determined to be 2.0 and 0.92 for glucose and xylose, respectively.  相似文献   

11.
Recent studies have proven ethanol to be the idael liquid fuel for transportation, and renewable ligno cellulosic materials to be the attractive feed stocks for ethanol fuel production by fermentation. The major fermentable sugars from hydrolysis of most cellulosic biomass are D-glucose and D-xylose. The naturally occurring Saccharomyces yeasts that are used by industry to produce ethanol from starches and cane sugar cannot metabolize xylose. Our group at Purdue University succeded in developing genetically engineered Saccharomyces yeasts capable of effectively cofermenting glucose and xylose to ethanol, which was accomplished by cloning three xylose-metabolizing genes into the yeast. In this study, we demonstrated that our stable recombinant Sacharomyces yeast, 424A (LNH-ST), which contains the cloned xylose-metabolizing genes stably integrated into the yeast chromosome in high copy numbers, can efficiently ferment glucose and xylose present in hydrolysates from different cellulosic biomass to ethanol.  相似文献   

12.
We investigated ethanol production from mixed sugar syrups. Hydrolysates were prepared from enzymatic saccharification of steam-pretreated aspen chips. Syrups containing 45 g/L of glucose and 12 g/L of xylose were detoxified through two ion-exchange resins and then fermented with Pichia stipitis and Saccharomyces cerevisiae immobilized in Ca-alginate gel beads. Combinations of different gel fractions in the fermentation volume, amount of yeast cells, and ratios of P. stipitis vs S. cerevisiae within each bead were compared. In the best conditions, by using a total beads volume corresponding to 25% of the working volume, we obtained a yield of 0.39 gethanol/ginitial sugars. This amount of gel entrapped an initial cell concentration of 6×1012cells/L with ratio of S. cerevisiae/P. stipitis of 0.25 g/g. Modified stirredtank reactors were obtained either by adding marbles or by inserting a perforated metal cylinder, which reduced considerably the rupture of beads while visibly improving oxygenation of the medium.  相似文献   

13.
A Gram-positive coccus-shaped bacterium capable of synthesizing higher relative molecular weight (M r), polyhydroxybutyrate (PHB) was isolated from sesame oil and identified as Staphylococcus epidermidis (by Microbial ID, Inc., Newark, NJ). The experiment was conducted by shake flask fermentation culture using media containing fructose. Cell growth up to a dry mass of 2.5 g/L and PHB accumulation up to 15.02% of cell dry wt was observed. Apart from using single carbohydrate as a sole carbon source, various industrial food wastes including sesame oil, ice cream, malt, and soya wastes were investigated as nutrients for S. epidermidis to reduce the cost of the carbon source. As a result, we found that by using malt wastes as nutrient for cell growth, PHB accumulation of S. epidermidis was much better than using other wastes as nutrient source. The final dried cell mass and PHB production using malt wastes were 1.76 g/L and 6.93% polymer/cells (grams/gram), and 3.5 g/L and 3.31% polymer/cells (grams/gram) in shake flask culture and in fermentor culture, respectively. The bacterial polymer was characterized by 1H-nuclear magnetic resonance (NMR), 13C-NMR, Fourier transform infrared, and differential scanning calorimetry. The results show that with different industrial food wastes as carbon and energy sources, the same biopolymer (PHB) was obtained. However, the use of sesame oil as the carbon source resulted in the accumulation of PHB with a higher melting point than that produced from other food wastes as carbon sources by this organism under similar experimental conditions.  相似文献   

14.
The possibility of using two by-products of the sugar cane industry, molasses and bagasse steam explosion liquor (SEL), for lignin peroxidase (LiP) production by Phanerochaete chrysosporium was investigated. For comparison, the fungus was initially cultivated in synthetic media containing either glucose, sucrose, xylose, or xylan as sole carbon sources. The effect of veratryl alcohol (VA) was also investigated in relation to the enzyme activity levels. Results showed that sucrose was not metabolized by this fungus, which precluded the use of molasses as a carbon source. Glucose, xylose, and xylan promoted equivalent cell growth. Enzyme levels in the absence of VA were lower than 28 UI/L and in the presence of VA reached 109 IU/L with glucose and 85 IU/L with xylose or xylan. SEL was adequate for P. chrysosporium LiP production as LiP activity reached 90 IU/L. When VA was added to this medium, enzyme concentration increased to 155 IU/L.  相似文献   

15.
We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes (XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into the chromosome or by transforming cells with XYL2 in a multicopy vector. Genes in all three constructs were under control of the strong constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. Enzymatic activity of XR and XDH in the recombinant strains increased with the copy number of XYL1 and XYL2. XR activity was not detected in the parent but was present at a nearly constant level in all of the transformants. XDH activity increased 12-fold when XYL2 was on a multicopy vector compared with when it was present in an integrated single copy. Product formation during xylose fermentation was affected by XDH activity and by aeration in recombinant S. cerevisiae. Higher XDH activity and more aeration resulted in less xylitol and more xylulose accumulation during xylose fermentation. Secretion of xylulose by strains with multicopy XYL2 and elevated XDH supports the hypothesis that d-xylulokinase limits metabolic flux in recombinant S. cerevisiae.  相似文献   

16.
Recombinant Zymomonas mobilis CP4:pZB5 was grown with pH control in batch and continuous modes with either glucose or xylose as the sole carbon and energy source. In batch cultures in which the ratio of the final cell mass concentration to the amount of sugar in the medium was constant (i.e., under conditions that promote “coupled growth”), maximum specific rates of glucose and xylose consumption were 8.5 and 2.1 g/(g of cell…h), respectively; maximum specific rates of ethanol production for glucose and xylose were 4.1 and 1.0 g/(g of cell…h), respectively; and average growth yields from glucose and xylose were 0.055 and 0.034 g of dry cell mass (DCM)/g of sugar respectively. The corresponding value of YATP for glucose and xylose was 9.9 and 5.1 g of DCM/mol of ATP, respectively. YATP for the wild-type culture CP4 with glucose was 10.4g of DCM/mol of ATP. For single substratechem ostat cultures in which the growth rate was varied as the dilution rate (D), the maximum or “true” growth yield (max Ya/s) was calculated from Pirt plots as the inverse of the slope of the best-fit linear regression for the specific sugar utilization rate as a function of D, and the “maintenance coefficient” (m) was determined as the y-axis intercept. For xylose, values of max Y s/s and m were 0.0417g of DCM/g of xylose (YATP=6.25) and 0.04g of, xylose/(g of cell…h), respectively. However, with glucose there was an observed deviation from linearity, and the data in the Pirt plot was best fit with a second-order polynomial in D. At D>0.1/h, YATP=8.71 and m=2.05g of glu/(g of cell…h) whereas at D<0.1/h, YATP=4.9g of DCM/mol of ATP and m=0.04g of glu/(g of cell…h). This observation provides evidence to question the validity of the unstructured growth model and the assumption that Pirt's maintenance coefficient is a constant that is in dependent of the growth rate. Collectively, these observations with individual sugars and the values assign ed to various growth and fermentation parameters will be useful in the development of models to predict the behavior of rec Zm in mixed substrate fermentations of the type associated with biomass-to-ethanol processes.  相似文献   

17.
The fermentation characteristics of a recombinant strain of Zymomonas mobilis ZM4(pZB5) capable of converting both glucose and xylose to ethanol have been further investigated. Previous studies have shown that the strain ZM4(pZB5) was capable of converting a mixture o 65 g/L of glucose and 65 g/L of xylose to 62 g/L of ethanol in 48 h with an overall yield of 0.46 g/g. Higher sugar concentrations (e.g., 75/75 g/L) resulted in incomplete xylose utilization (80 h). In the present study, further kinetic evaluations at high sugar levels are reported. Acetate inhibition studies and evaluation of temperature and pH effects indicated increased maximum specific uptake rates of glucose and xylose under stressed conditions with increased metabolic uncoupling. A high-productivity system was developed that involved a membrane bioreactor with cell recycling. At sugar concentrations of approx 50/50 g/L of glucose/xylose, an ethanol concentration of 50 g/L, an ethanol productivity of approx 5 g/(L·h), and a yield (Y p/s) of 0.50 g/g were achieved. Decreases in cell viability were found in this system after attainment of an initial steady state (40–60 h); a slow bleed of concentrated cells may be required to overcome this problem.  相似文献   

18.
The fermentation characteristics and effects of lignocelulosic toxic compounds on recombinant Zymomonas mobilis ZM4(pZB5), which is capable of converting both glucose and xylose to ethanol, and its parental strain, ZM4, were characterized using 13C and 31P nuclear magnetic resonance (NMR) in vivo. From the 31P NMR data, the levels of nucleoside triphosphates (NTP) of ZM(pZB5) using xylose were lower than those of glucose. This can be related to the intrinsically slower assimilation and/or metabolism of xylose compared to glucose and is evidence of a less energized state of ZM4(pZB5) cells during xylose fermentation. Acetic acid was shown to be strongly inhibitory to ZM4(pZB5) on xylose medium, with xylose utilization being completely inhibited at pH 5.0 or lower in the presence of 10.9 g/L of sodium acetate. From the 31P NMR results, the addition of sodium acetate caused decreased NTP and sugar phosphates, together with acidification of the cytoplasm. Intracellular deenergization and acidification appear to be the major mechanisms by which acetic acid exerts its toxic effects on this recombinant strain.  相似文献   

19.
This study addressed the utilization of an industrial waste stream, paper sludge, as a renewable cheap feedstock for the fermentative production of hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus. Hydrogen, acetate, and lactate were produced in medium in which paper sludge hydrolysate was added as the sole carbon and energy source and in control medium with the same concentration of analytical grade glucose and xylose. The hydrogen yield was dependent on lactate formation and varied between 50 and 94% of the theoretical maximum. The carbon balance in the medium with glucose and xylose was virtually 100%. The carbon balance was not complete in the paper sludge medium because the measurement of biomass was impaired owing to interfering components in the paper sludge hydrolysate. Nevertheless, >85% of the carbon could be accounted for in the products acetate and lactate. The maximal volumetric hydrogen production rate was 5 to 6 mmol/(L·h), which was lower than the production rate in media with glucose, xylose, or a combination of these sugars (9–11 mmol/[L·h]). The reduced hydrogen production rate suggests the presence of inhibiting components in paper sludge hydrolysate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号