首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The explicit compact difference scheme,proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al.,published in Applied Mathematics and Mechanics (English Edition),2007,28(7),943-953,has the same performance as the conventional finite difference schemes.It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless,we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations,especially for higher accurate schemes.  相似文献   

2.
Based on the successive iteration in the Taylor series expansion method, a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper. Numerical characteristics of the scheme are studied by the Fourier analysisl Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node, the proposed scheme is explicit and can achieve arbitrary order of accuracy in space. Application examples for the convectiondiffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given. It is found that the proposed compact scheme is not only simple to implement and economical to use, but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.  相似文献   

3.
Based on the successive iteration in the Taylor series expansion method,a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper.Numerical characteristics of the scheme are studied by the Fourier analysis. Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node,the proposed scheme is explicit and can achieve arbitrary order of accuracy in space.Application examples for the convection- diffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given.It is found that the proposed compact scheme is not only simple to implement and economical to use,but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.  相似文献   

4.
通过在泰勒级数展开中运用逐阶迭代的方法,推导出了空间二阶导数任意精度的三点紧致的表达式,并在半高散方程中通过二维扩散方程本身把时间导数转换为空间导数,从而推导出了时空任意阶的三点紧致显格式.数值实验表明,本文格式的精度很高,而且具有使用简单,易于编程的优点,对求解二维污染扩散方程具有很好的应用前景.  相似文献   

5.
浅水方程组合型超紧致差分格式   总被引:1,自引:0,他引:1  
提出一族组合型超紧致差分格式(CSCD),对CSCD的数值特性作了分析,并同其他中心型差分格式进行比较。从定性角度,得出同阶中心差分格式中,CSCD格式的截断误差系数最小的结论。从定量角度,利用Fou-rier分析方法分析了CSCD格式的分辨率,并同其他中心型差分格式比较,得出CSCD格式有较高的分辨率的结论。把10阶CSCD格式应用于KdV-Burgers方程和浅水方程的数值模拟,给出两个应用算例。数值实验表明CSCD格式不仅有理论上的高精度,而且有良好的稳定性和收敛性。  相似文献   

6.
针对污染扩散方程提出了时间任意阶精度的显式格式,并对该格式的稳定性和精度进行了分析,理论结果表明:一阶精度的计算格式是传统的显格式,其稳定条件为:s≤1/2(s=D.Δt/Δx2,D为扩散系数,Δt为时间步长,Δx为空间步长),随着保留精度阶数的增加,稳定性范围也会随之增大;当保留无穷阶精度时,格式是无条件稳定的。这也就从一个侧面揭示了稳定性与时间精度之间的关系,为高性能数值计算格式的构思提供了可以借鉴的原则。数值算例的结果表明,本文格式具有一定的实用性。  相似文献   

7.
A high‐order accurate upwind compact difference scheme with an optimal control coefficient is developed to track the flame front of a premixed V‐flame. In multi‐dimensional problems, dispersion effect appears in the form of anisotropy. By means of Fourier analysis of the operators, anisotropic effects of the upwind compact difference schemes are analysed. Based on a level set algorithm with the effect of exothermicity and baroclinicity, the flame front is tracked. The high‐order accurate upwind compact scheme is employed to approximate the level set equation. In order to suppress numerical oscillations, the group velocity control technique is used and the upwind compact difference scheme is combined with the random vortex method to simulate the turbulent premixed V‐flame. Distributions of velocities and flame brush thickness are obtained by this technique and found to be comparable with experimental measurement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We prove that nonsmooth quasilinear parabolic systems admit a local solution in L p strongly differentiable with respect to time over a bounded three-dimensional polyhedral space domain. The proof rests essentially on new elliptic regularity results for polyhedral Laplace interface problems for anisotropic materials. These results are based on sharp pointwise estimates for Greens function, which are also of independent interest. To treat the nonlinear problem, we then apply a classical theorem of Sobolevskii for abstract parabolic equations and recently obtained resolvent estimates for elliptic operators and interpolation results. As applications we have in mind primarily reaction-diffusion systems. The treatment of such equations in an L p context seems to be new and allows (by Gauss theorem) the proper definition of the normal component of currents across the boundary.  相似文献   

9.
We study the L 1 stability of multi-dimensional discrete-velocity Boltzmann equations. Under suitable smallness assumption on initial data, we show that bounded mild solutions are L 1 stable. For a stability estimate, we employ Bonys multi-dimensional analysis for total interactions over characteristic planes.  相似文献   

10.
In this paper we study the two-dimensional hydrostatic Euler equations in a periodic channel. We prove the local existence and uniqueness of H s solutions under the local Rayleigh condition. This extends Brenier’s (Nonlinearity 12(3):495–512, 1999) existence result by removing an artificial condition and proving uniqueness. In addition, we prove weak–strong uniqueness, mathematical justification of the formal derivation and stability of the hydrostatic Euler equations. These results are based on weighted H s a priori estimates, which come from a new type of nonlinear cancellation between velocity and vorticity.  相似文献   

11.
Using the extension of Krasnoselskii's fixed point theorem in a cone, we prove the existence of at least one positive solution to the nonlinear nth order m-point boundary value problem with dependence on the first order derivative. The associated Green's function for the nth order m-point boundary value problem is given, and growth conditions are imposed on the nonlinear term f which ensures the existence of at least one positive solution. A simple example is presented to illustrate applications of the obtained results.  相似文献   

12.
A new finite difference method for the discretization of the incompressible Navier–Stokes equations is presented. The scheme is constructed on a staggered‐mesh grid system. The convection terms are discretized with a fifth‐order‐accurate upwind compact difference approximation, the viscous terms are discretized with a sixth‐order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth‐order difference approximation on a cell‐centered mesh. Time advancement uses a three‐stage Runge–Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
14.
We prove the solvability in Sobolev spaces for both divergence and non-divergence form higher order parabolic and elliptic systems in the whole space, on a half space, and on a bounded domain. The leading coefficients are assumed to be merely measurable only in the time variable and have small mean oscillations with respect to the spatial variables in small balls or cylinders. For the proof, we develop a set of new techniques to produce mean oscillation estimates for systems on a half space.  相似文献   

15.
A class of nonlinear elliptic problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential is considered.By applying the version of the nonsmooth three-critical-point theorem,the existence of three solutions to the problems is proved.  相似文献   

16.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The bioluminescence images of unstirred cultures show that lux reporter E. coli (0.10 mg biomass per ml of the broth medium) in 6.4–10 mm diameter circular containers induce center-fluid-rising toroidal convection of ≤1 mm/min. The bioconvective torus is stable in a Teflon vessel and is deformed by 3.2–4.4 mm wavelength azimuthal waves in polystyrene or glass vessels.  相似文献   

18.
19.
We investigated the dynamic viscoelasticity and elongational viscosity of polypropylene (PP) containing 0.5 wt% of 1,3:2,4-bis-O-(p-methylbenzylidene)-d-sorbitol (PDTS). The PP/PDTS system exhibited a sol–gel transition (T gel) at 193 °C. The critical exponent n was nearly equal to 2/3, in agreement with the value predicted by a percolation theory. This critical gel is due to a three-dimensional network structure of PDTS crystals. The elongational viscosity behavior of neat PP followed the linear viscosity growth function + (t), where η + (t) is the shear stress growth function in the linear viscoelastic region. The elongational viscosity of the PP/PDTS system also followed the + (t) above T gel but did not follow the + (t) and exhibited strong strain-softening behavior below T gel. This strain softening can be attributed to breakage of the network structure of PDTS with a critical stress (σ c) of about 104 Pa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号