首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computer simulation of the negative electrode (anode) operation in a lithium-ion battery is performed. A complete research program is carried out in accordance with the recommendations of the theory of porous electrodes: the “model of equal-sized grains of two types” was studied, percolation properties of the anode active layer were researched, values of effective coefficients were calculated for charge transfer and mass transport, a complete system of equations describing operation of the anode is presented. Two specific cases of galvanostatic mode of anode discharge are considered in detail: an “ideal” anode and anode with nanosize particles. Working anode parameters are calculated: optimum bulk concentration of graphite in the active layer, active layer thickness, time of complete anode discharge, its specific electric capacitance and final potential on the active/layer interelectrode space interface. Advisability of working with anodes with nanosize grains and electrolyte with enhanced specific conductivity is shown.  相似文献   

2.
A glassy carbon electrode (GCE) was modified with silicon carbide nanoparticles and used to investigate the electrochemistry of the drug nimesulide via voltammetry and chronoamperometry. The structure of the modified electrode was studied by field emission scanning electron microscopy. Nimesulide undergoes electroreduction at pH 2 at a potential that is shifted from ?526 mV (at the bare GCE) to ?387 mV at the modified electrode. Simultaneously, sensitivity is increased by a factor of 5.8. The charge transfer coefficient, diffusion coefficient, standard heterogeneous rate constant and catalytic reaction rate constant were determined. A plot potential vs. pH revealed a voltammetric pKa value of about 6.5–7.0. The differential pulse voltammetric calibration plot for nimesulide is linear in 0.09–8.7 μM concentration range, and the detection limit and sensitivity are 30 nM and 512 nA.μM?1, respectively. The modified electrode was applied to the determination of nimesulide in acidic solution and human blood serum samples without further pretreatment. The recoveries, as determined by the standard addition method, range from 95.7 to 98.7%, with an RSD of around 1.6%.
Figure
(A) CVs of SiC-NPs/GC modified electrode at scan rate 0.1 V.s-1 in pH 2.0 PBS solutions in the absence (c) and the presence of 8.0 μM nimesulide (d). (a) and (b) as (c) and (d), respectively at bare GC electrode. (B) DPVs at voltage step 0.008 V, sweep rate 0.02 V.s?1 and pulse amplitude 0.05 V in pH 2.0 PBS solutions in the absence (c) and the presence of 8.0 μM nimesulide (d). (a) and (b) as (c) and (d) respectively at bare GC electrode.  相似文献   

3.
The effect of formation protocol including different constant voltage points at low potential, different constant voltage time, and different current were studied in this paper. The electrochemical impedance spectroscopy and stored and cycle performance tests were used to verify the parameter of different formation protocols. The results show that the resistance of solid electrolyte interphase film R f drops during the whole potential range except 3.1 to 3.5 V and the diffusion coefficient P f which represents the uniformity of anode electrode surface decreases only at this potential range. The effects of different constant voltage points at 3.1 to 3.5 V were studied to increase the uniformity of anode electrode surface and decrease the resistance of the SEI film. The film is more stable at 3.3 V constant voltage than other potentials, and a constant voltage 60 min is enough to form a uniformity and compact passivation layer. With the constant voltage time extending, the P f decreases. When the formation current to constant potential is increased, the film is more loose (or porous) and less adhesive. The formation protocol of 0.01 C to 3.3 V constant voltage 60 min shows the best cycling performance, and formation protocol of no constant voltage shows the worst cycling performance. Considering the time and energy consumption, the formation protocol of 0.05 C to 3.3-V constant voltage 60 min is the best.  相似文献   

4.
5.
Accurate knowledge of transport properties of Li-insertion materials in application-relevant temperature ranges is of crucial importance for the targeted optimization of Li-ion batteries (LIBs). Galvanostatic intermittent titration technique (GITT) is a widely applied method to determine Li-ion diffusion coefficients of electrode materials. The well-known calculation formulas based on Weppner's and Huggins’ approach, imply a square-root time dependence of the potential during a GITT pulse. Charging the electrochemical double layer capacitance at the beginning of a GITT pulse usually takes less than one second. However, at lower temperatures down to −40 °C, the double layer charging time strongly increases due to an increase of the charge transfer resistance. The charging time can become comparable with the pulse duration, impeding the conventional GITT diffusion analysis. We propose a model to describe the potential change during a galvanostatic current pulse, which includes an initial, relatively long-lasting double layer charging, and analyze the accuracy of the lithium diffusion coefficient, derived by using the Weppner-Huggins method within a suitably chosen time interval of the pulse. Effects leading to an inaccurate determination of the diffusion coefficient are discussed and suggestions to improve GITT analyses at low temperature are derived.  相似文献   

6.
Basic kinetic parameters of electrochemical intercalation of lithium into thin carbon films are determined by relaxation methods of current and potential steps. The overall electrode polarization is theoretically and experimentally divided into kinetic and diffusion constituents. The former is connected with the hindered ion transfer in a surface solid-electrolyte layer. The latter is due to the slow diffusion of lithium inside the carbon matrix. Concentration dependences of parameters of a solid-electrolyte layer and those of the diffusion coefficient for lithium in carbon are determined at lithium concentrations in the electrode varied from 2 to 16 M. The kinetic current is dependent on polarization in the interval 0.01 to 2.5 V, the dependence being identical to that for a lithium electrode.  相似文献   

7.
Development of a novel modified electrode for electrocatalytic oxidation of methanol in order to decrease overvoltage is importance. In this paper, carbon paste electrode (CPE) was modified by ZSM-5 nanozeolite. The average diameter of used nanozeolite was 97 nm. Ni2+ ions were incorporated to the nanozeolite by immersion of the modified electrode in a 0.1 M nickel chloride solution. Then, electrochemical studies of this electrode were performed by using cyclic voltammetry(CV) in alkaline medium. This modified electrode was used as an anode for the electrocatalytic oxidation of methanol in 0.1 M of NaOH solution. The obtained data demonstrated that ZSM-5 nanozeolite at the surface of CPE improves catalytic efficiency of the dispersed nickel ions toward methanol oxidation. The values of electron transfer coefficient, charge-transfer rate constant, and the electrode surface coverage are obtained 0.61, 0.2342 s?1, and 4.33 × 10?8 mol cm?2, respectively. Also, the mean value of catalytic rate constant between the methanol and redox sites of electrode and diffusion coefficient were found to be 2.54 × 104 cm3 mol?1 s?1 and 1.85 × 10?8 cm2 s?1, respectively. Obtained results from both CV and chronoamperometric techniques indicated that the electrode reaction is a diffusion-controlled process.  相似文献   

8.
A computer simulation of the negative electrode (anode) operation in a lithium-ion battery is performed. A complete research program is carried out in accordance with the recommendations of the theory of porous electrodes: the “model of equal-sized grains of two types” was studied, percolation properties of the anode active layer were researched, values of effective coefficients were calculated for charge transfer and mass transport, a complete system of equations describing operation of the anode is presented. Two specific cases of galvanostatic mode of anode discharge are considered in detail: an “ideal” anode and anode with nanosize particles. Working anode parameters are calculated: optimum bulk concentration of graphite in the active layer, active layer thickness, time of complete anode discharge, its specific electric capacitance and final potential on the active/layer interelectrode space interface. Advisability of working with anodes with nanosize grains and electrolyte with enhanced specific conductivity is shown.  相似文献   

9.
Crow DR  Ling SL 《Talanta》1972,19(8):915-925
A computer program has been written for calculation of the activation energies of irreversible electrode processes at a dropping mercury electrode, based on the variation of current and half-wave potential with temperature. The program calculates the half-wave potential, the transfer coefficient, and the activation energies of the diffusion process and the irreversible electrode process. It has been written in both ALGOL and FORTRAN.  相似文献   

10.
《Analytical letters》2012,45(1):156-170
In this paper we have investigated the electrochemical activity of lanthanum chloride (La (III)) in the presence of calcon carboxylic acid (CCA) using a multi-walled carbon nano tube/carbon paste electrode (CNT/CPE). The peak current increases linearly with increasing of the La (III) concentration. For this purpose, a few electrochemical methods such as cyclic, differential pulse voltammetry, linear sweep and hydrodynamic voltammetry, and chronoamperometry were used. The results show that calcon carboxylic acid as a ligand was useful for determination of La (III) and was able to improve its sensitivity. Cyclic voltammetry was used for study of reduction reaction of La (III) at the surface of modified electrode. The electrochemical parameters for La (III) at the surface of CNT/CPE, such as diffusion coefficient (D/ cm2 s ?1 = 5.26 × 10?6), the electron transfer coefficient, (α = 0. 43), and the reduction rate constant, (k/ M s?1 = 2.33 (±0.015) × 102), were determined using voltammetry methods, which with the detection limit of La (III) by differential pulse voltammetry was found to be 1.3 nM. The combination of CCA with CNT as mediators in carbon paste electrode showed that this electrode is capable, sensitive, and simple to quantify La (III) in real samples with an average recovery of 97.64%.  相似文献   

11.
Co(phen)2TATP3+与DNA在旋转金盘金环电极上的相互作用研究   总被引:4,自引:0,他引:4  
在pH=7.2的Tris缓冲溶液中,利用旋转环盘电极法研究了金电极上Co(phen)2TATP3+与DNA的相互作用,并根据扩散控制和电化学控制下得到的各种参数,对它们作用的模式进行了讨论.发现当一定量的DNA存在时,Co(phen)2TATP3+的扩散系数、还原反应的传递系数和半波电位下的速率常数、还原产物Co(phen)2TATP2+的收集系数和脱出率等都发生了较大幅度的减小.利用Co(bpy)33+进行比较研究表明,Co(phen)2TATP3+与Co(bpy)33+在加入DNA后在收集系数和传递系数变化上存在较大的差异.  相似文献   

12.
2,3—二氨基吩嗪的薄层光谱电化学研究   总被引:1,自引:0,他引:1  
焦奎  崔光磊  杨涛  牛淑妍 《化学学报》2003,61(4):514-519
研究了2,3—二氨基吩嗪(DAP)在金圆盘电极、金超微电极上的循环伏安行为 和在金网栅电极上的薄层循环伏安行为.在pH2.0的B—R缓冲溶液中的2,3—二氨 基吩嗪在金圆盘电极上为准可逆氧还过程;以超微电极法求得了2,3—二氨基吩嗪 在pH2.0的B—R缓冲溶液中的扩散系数,由耗竭性库仑电解和循环伏安法求得其电 极反应电子转移数和H+反应级数均为2,实验说明参与电极反应的H+也为2,并用循 环伏安法求得其标准电极反应速率常数.采用紫外—可见薄层光谱电化学方法测得 2,3—二氨基吩嗪的克式量电位和电子转移数,与电化学实验结果一致;双电位阶 跃—计时吸收紫外—可见薄层光谱电化学实验说明,2,3—二氨基吩嗪电还原无随 后化学反应,其在电极上经历了H+eH+e的两步一电子过程,生成产物2,3—二氨基 -5,10-二氢吩嗪.  相似文献   

13.
Electrochemical behaviors of U(VI) in 1-butyl-3-methylimidazolium chloride (C4MimCl) with various water contents investigated by chronopotentiometry and cyclic voltammetry. The electrochemical reduction of U(VI) was identified to follow two processes: a lower valence intermediate U(V) was initially formed at the potential of ca. ?0.2 V(vs. Ag wire). Then, further deposition of UO2 was followed at around ?0.8 V. Little amount of water (1–4 wt%) in C4MimCl, however, has an effect on the U(VI) reduction by changing the current density of the redox reaction and the diffusion coefficient of U(VI) in C4MimCl. The deposited product by potentiostatic electrolysis on the surface of stainless steel electrode was characterized by the scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) methods. Although the electrodeposited black film was amorphous, the electrochemical reduced product of U(VI) can be still confirmed to be UO2 by XRD after the crystallization of the amorphous deposits at 1,073 K in nitrogen atmosphere.  相似文献   

14.
A new composite electrode of multiwall carbon nanotubes (MWNTs) and 1-dodecyl-3-methylimidazolium hexafluorophosphate (DDMIMPF6) was fabricated to determine rutin. This electrode showed very attractive electrochemical performances compared to other kinds of ionic liquid modified electrodes and notably improved sensitivity and stability. Electrochemical behavior of rutin at the composite electrode had been investigated in pH 2.09 Britton–Robinson buffer solution by cyclic voltammetry and square wave voltammetry. The experimental results suggested that the composite electrode exhibited an electrocatalytic activity toward the redox of rutin. The electrochemical parameters of rutin were calculated with the results of the charge transfer coefficient (α) and the standard rate constant (k s) as 0.48 and 2.09 s?1. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 0.03–1.5 μM, with a detection limit of 0.01 μM (S/N?=?3). The relative standard deviation for six times successive determination of 1 μM rutin was 1.6 %. The method was successfully applied to the determination of rutin in tablets and urine samples without the influence of the coexisting substances. In addition, the MWNTs/DDMIMPF6 composite electrode exhibits a distinct advantage of simple preparation, surface renewal, good reproducibility, and stability.  相似文献   

15.
The poisonous intermediate of methanol oxidation on a Pt electrode was validated to be CO(ad) by electrochemical method. An approximate treatment to bimolecular elementary reactions on an electrode was advanced and then was applied to the stripping normal pulse voltammetry (NPV) for complex multistep multielectron transfer processes on plane electrodes to study the kinetics of completely irreversible process of CO(ad) oxidation to CO2. The kinetic parameters for this process, such as standard rate constant (k0) and anodic transfer coefficient (alpha) for this irreversible heterogeneous electron-transfer process at electrode/solution interface and apparent diffusion coefficient (D(app)) for charge-transfer process within the monolayer of CO(ad) on electrode surface, were obtained with stripping NPV method. The effect of the approximate treatment on the kinetic parameters was also analyzed.  相似文献   

16.
Zinc nitroprusside (ZnNP) nanoparticles were fabricated at the surface of zinc powder-doped carbon ceramic electrode (CCE) by a chemical derivatization process. This modified electrode was characterized by scanning electron microscopy, atomic force microscopy and cyclic voltammetry techniques. The charge transfer rate constant (k s) and charge transfer coefficient (α) were calculated for the electron exchange reaction of the ZnNP thin film. The ZnNP nanoparticle-modified CCE (ZnNP|CCE) showed good electrocatalytic activity toward hydrazine oxidation. The limit of detection (S/N = 3) and sensitivity were found to be 0.16 µM and 0.21 µA/µM, respectively. The mechanism of hydrazine electrooxidation at the electrode surface was studied. Finally, the ZnNP|CCE was successfully used for the determination of trace amount of hydrazine in different spiked and real samples.  相似文献   

17.
This communication reports the design and characterization of an air-breathing laminar flow-based microfluidic fuel cell (LFFC). The performance of previous LFFC designs was cathode-limited due to the poor solubility and slow transport of oxygen in aqueous media. Introduction of an air-breathing gas diffusion electrode as the cathode addresses these mass transfer issues. With this design change, the cathode is exposed to a higher oxygen concentration, and more importantly, the rate of oxygen replenishment in the depletion boundary layer on the cathode is greatly enhanced as a result of the 4 orders of magnitude higher diffusion coefficient of oxygen in air as opposed to that in aqueous media. The power densities of the present air-breathing LFFCs are 5 times higher (26 mW/cm2) than those for LFFCs operated using formic acid solutions as the fuel stream and an oxygen-saturated aqueous stream at the cathode ( approximately 5 mW/cm2). With the performance-limiting issues at the cathode mitigated, these air-breathing LFFCs can now be further developed to fully exploit their advantages of direct control over fuel crossover and the ability to individually tailor the chemical composition of the cathode and anode media to enhance electrode performance and fuel utilization, thus increasing the potential of laminar flow-based fuel cells.  相似文献   

18.
A novel modified electrode was fabricated by a mixed-valent nickel hexacyanoferrate (NiHCF) and poly 1,5-diaminonaphthalene (PDAN) hybrid at glassy carbon (GC) electrode. The obtained NiHCF/PDAN/GC modified electrode was characterized using cyclic voltammetry (CV) technique and scanning electron microscope (SEM). This electrode showed excellent catalytic properties toward the electrooxidation of ascorbic acid (A.A), dopamine (D.A) and uric acid (U.A) in 0.1 M NaCl solution using CV and square wave voltammetry (SWV) techniques. The NiHCF/PDAN/GC modified electrode exhibits high sensitivity, selectivity and stability making it a suitable sensor for the simultaneous detection of A.A, U.A and D.A in single and ternary mixture solutions. Different analytical parameters such as low detection limit (LOD), low quantification limit, correlation coefficient (R) and linear dynamic range were reported and discussed. The NiHCF/PDAN/GC modified electrode exhibits linear responses to A.A, D.A and U.A in the range 600–1000, 600–1000 and 600–1000 µM, respectively. The LOD for A.A, D.A and U.A were 0.036, 0.034 and 0.037 µM, respectively. The analytical behavior of this sensor had been evaluated for the detection of A.A and U.A in human serum and urine samples with satisfactory results.  相似文献   

19.
The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.  相似文献   

20.
Recently proposed chemically prepared electrodes are coated with a thin, permeable, insulating, inert film which does not react with the depolarizer, does not allow depolarization on its surface and does not change the standard constant of the depolarization rate. It only changes the diffusion coefficient of a certain ion near the surface of the electrode. In this article, the theory of a reversible reduction of a simple ion at a film-coated stationary planar electrode is developed. If the film thickness is comparable with a diffusion layer thickness, considerable changes on the i-t curves can occur, but the position of the half-wave potential will remain constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号