首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that every nonlinear centralizer from $L_p$ to $L_q$ is trivial unless $q=p$ . This means that if $q\ne p$ , the only exact sequence of quasi-Banach $L_\infty $ -modules and homomorphisms $0\rightarrow L_q\rightarrow Z\rightarrow L_p\rightarrow 0$ is the trivial one where $Z=L_q\oplus L_p$ . From this it follows that the space of centralizers on $L_p$ is essentially independent on $p\in (0,\infty )$ , which confirms a conjecture by Kalton.  相似文献   

2.
We consider the system $\Delta u - W_u(u) = 0$ , where $u: \mathbb R ^n \rightarrow \mathbb R ^m$ , for potentials $W: \mathbb R ^m \rightarrow \mathbb R $ that possess $N$ global minima and are invariant under a finite reflection group $G$ . We prove the existence of nontrivial $G$ -equivariant entire solutions connecting the $N$ minima of $W$ . Our proof only requires the minima of $W$ to be nondegenerate and an assumption on the behavior of $W$ for large $u$ .  相似文献   

3.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

4.
Let $X$ be a compact connected Riemann surface and $G$ a connected reductive complex affine algebraic group. Given a holomorphic principal $G$ -bundle $E_G$ over $X$ , we construct a $C^\infty $ Hermitian structure on $E_G$ together with a $1$ -parameter family of $C^\infty $ automorphisms $\{F_t\}_{t\in \mathbb R }$ of the principal $G$ -bundle $E_G$ with the following property: Let $\nabla ^t$ be the connection on $E_G$ corresponding to the Hermitian structure and the new holomorphic structure on $E_G$ constructed using $F_t$ from the original holomorphic structure. As $t\rightarrow -\infty $ , the connection $\nabla ^t$ converges in $C^\infty $ Fréchet topology to the connection on $E_G$ given by the Hermitian–Einstein connection on the polystable principal bundle associated to $E_G$ . In particular, as $t\rightarrow -\infty $ , the curvature of $\nabla ^t$ converges in $C^\infty $ Fréchet topology to the curvature of the connection on $E_G$ given by the Hermitian–Einstein connection on the polystable principal bundle associated to $E_G$ . The family $\{F_t\}_{t\in \mathbb R }$ is constructed by generalizing the method of [6]. Given a holomorphic vector bundle $E$ on $X$ , in [6] a $1$ -parameter family of $C^\infty $ automorphisms of $E$ is constructed such that as $t\rightarrow -\infty $ , the curvature converges, in $C^0$ topology, to the curvature of the Hermitian–Einstein connection of the associated graded bundle.  相似文献   

5.
Let $f$ be a Hecke–Maass cuspidal newform of square-free level $N$ and Laplacian eigenvalue $\lambda $ . It is shown that $\left||f \right||_\infty \ll _{\lambda ,\epsilon } N^{-\frac{1}{6}+\epsilon } \left||f \right||_2$ for any $\epsilon >0$ .  相似文献   

6.
We study a standard model of economic agents on the nodes of a social network graph who learn a binary “state of the world” $S$ , from initial signals, by repeatedly observing each other’s best guesses. Asymptotic learning is said to occur on a family of graphs $G_n = (V_n,E_n)$ with $|V_n| \rightarrow \infty $ if with probability tending to $1$ as $n \rightarrow \infty $ all agents in $G_n$ eventually estimate $S$ correctly. We identify sufficient conditions for asymptotic learning and contruct examples where learning does not occur when the conditions do not hold.  相似文献   

7.
Let $G$ denote a closed, connected, self-adjoint, noncompact subgroup of $GL(n,\mathbb R )$ , and let $d_{R}$ and $d_{L}$ denote respectively the right and left invariant Riemannian metrics defined by the canonical inner product on $M(n,\mathbb R ) = T_{I} GL(n,\mathbb R )$ . Let $v$ be a nonzero vector of $\mathbb R ^{n}$ such that the orbit $G(v)$ is unbounded in $\mathbb R ^{n}$ . Then the function $g \rightarrow d_{R}(g, G_{v})$ is unbounded, where $G_{v} = \{g \in G : g(v) = v \}$ , and we obtain algebraically defined upper and lower bounds $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ for the asymptotic behavior of the function $\frac{log|g(v)|}{d_{R}(g, G_{v})}$ as $d_{R}(g, G_{v}) \rightarrow \infty $ . The upper bound $\lambda ^{+}(v)$ is at most 1. The orbit $G(v)$ is closed in $\mathbb R ^{n} \Leftrightarrow \lambda ^{-}(w)$ is positive for some w $\in G(v)$ . If $G_{v}$ is compact, then $g \rightarrow |d_{R}(g,I) - d_{L}(g,I)|$ is uniformly bounded in $G$ , and the exponents $\lambda ^{+}(v)$ and $\lambda ^{-}(v)$ are sharp upper and lower asymptotic bounds for the functions $\frac{log|g(v)|}{d_{R}(g,I)}$ and $\frac{log|g(v)|}{d_{L}(g,I)}$ as $d_{R}(g,I) \rightarrow \infty $ or as $d_{L}(g,I) \rightarrow \infty $ . However, we show by example that if $G_{v}$ is noncompact, then there need not exist asymptotic upper and lower bounds for the function $\frac{log|g(v)|}{d_{L}(g, G_{v})}$ as $d_{L}(g, G_{v}) \rightarrow \infty $ . The results apply to representations of noncompact semisimple Lie groups $G$ on finite dimensional real vector spaces. We compute $\lambda ^{+}$ and $\lambda ^{-}$ for the irreducible, real representations of $SL(2,\mathbb R )$ , and we show that if the dimension of the $SL(2,\mathbb R )$ -module $V$ is odd, then $\lambda ^{+} = \lambda ^{-}$ on a nonempty open subset of $V$ . We show that the function $\lambda ^{-}$ is $K$ -invariant, where $K = O(n,\mathbb R ) \cap G$ . We do not know if $\lambda ^{-}$ is $G$ -invariant.  相似文献   

8.
We present a unified approach to a couple of central limit theorems for the radial behavior of radial random walks on hyperbolic spaces as well as for time-homogeneous Markov chains on $[0,\infty [$ whose transition probabilities are defined in terms of Jacobi convolutions. The proofs of all central limit theorems are based on corresponding limit results for the associated Jacobi functions $\varphi _{\lambda }^{(\alpha ,\beta )}$ . In particular, we consider the limit $\alpha \rightarrow \infty $ , the limit $\varphi _{i\rho -n\lambda }^{(\alpha ,\beta )}(t/n)$ for $n\rightarrow \infty $ , and the behavior of the Jacobi function $\varphi _{i\rho -\lambda }^{(\alpha ,\beta )}(t)$ for small $\lambda $ . The proofs of all these limit results are based on the known Laplace integral representation for Jacobi functions. Parts of the results are known, other improve known ones, and other are new.  相似文献   

9.
We consider biharmonic maps $\phi :(M,g)\rightarrow (N,h)$ from a complete Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. Assume that $ p $ satisfies $ 2\le p <\infty $ . If for such a $ p $ , $\int _M|\tau (\phi )|^{ p }\,\mathrm{d}v_g<\infty $ and $\int _M|\,\mathrm{d}\phi |^2\,\mathrm{d}v_g<\infty ,$ where $\tau (\phi )$ is the tension field of $\phi $ , then we show that $\phi $ is harmonic. For a biharmonic submanifold, we obtain that the above assumption $\int _M|\,\mathrm{d}\phi |^2\,\mathrm{d}v_g<\infty $ is not necessary. These results give affirmative partial answers to the global version of generalized Chen’s conjecture.  相似文献   

10.
Let $(L, h)\rightarrow (X, \omega )$ denote a polarized toric Kähler manifold. Fix a toric submanifold $Y$ and denote by $\hat{\rho }_{tk}:X\rightarrow \mathbb {R}$ the partial density function corresponding to the partial Bergman kernel projecting smooth sections of $L^k$ onto holomorphic sections of $L^k$ that vanish to order at least $tk$ along $Y$ , for fixed $t>0$ such that $tk\in \mathbb {N}$ . We prove the existence of a distributional expansion of $\hat{\rho }_{tk}$ as $k\rightarrow \infty $ , including the identification of the coefficient of $k^{n-1}$ as a distribution on $X$ . This expansion is used to give a direct proof that if $\omega $ has constant scalar curvature, then $(X, L)$ must be slope semi-stable with respect to $Y$ (cf. Ross and Thomas in J Differ Geom 72(3): 429–466, 2006). Similar results are also obtained for more general partial density functions. These results have analogous applications to the study of toric K-stability of toric varieties.  相似文献   

11.
Let $\mathcal P _\lambda $ be a homogeneous Poisson point process of rate $\lambda $ in the Clifford torus $T^2\subset \mathbb E ^4$ . Let $(f_0, f_1, f_2, f_3)$ be the $f$ -vector of conv $\,\mathcal P _\lambda $ and let $\bar{v}$ be the mean valence of a vertex of the convex hull. Asymptotic expressions for $\mathsf E \, f_1$ , $\mathsf E \, f_2$ , $\mathsf E \, f_3$ and $\mathsf E \, \bar{v}$ as $\lambda \rightarrow \infty $ are proved in this paper.  相似文献   

12.
We analyse sequences of discs conformally immersed in $ \mathbb{R }^ n$ with energy $ \int _{ D} |A_k |^ 2 \le \gamma _n$ , where $ \gamma _n = 8\pi $ if $ n=3$ and $ \gamma _n = 4 \pi $ when $n\ge 4$ . We show that if such sequences do not weakly converge to a conformal immersion, then by a sequence of dilations we obtain a complete minimal surface with bounded total curvature, either Enneper’s minimal surface if $ n=3$ or Chen’s minimal graph if $ n \ge 4$ . In the papers, (Kuwert and Li, Comm Anal Geom 20(2), 313–340, 2012; Rivière, Adv Calculus Variations 6(1), 1–31, 2013) it was shown that if a sequence of immersed tori diverges in moduli space then $\liminf _ {k\rightarrow \infty } \mathcal W ( f_k )\ge 8\pi $ . We apply the above analysis to show that in $ \mathbb{R }^3$ if the sequence diverges so that $ \lim _{ k \rightarrow \infty } \mathcal W (f_k) =8\pi $ then there exists a sequence of Möbius transforms $ \sigma _{k}$ such that $ \sigma _k\circ f _k$ converges weakly to a catenoid.  相似文献   

13.
Consider the stationary Navier–Stokes equations in an exterior domain $\varOmega \subset \mathbb{R }^3 $ with smooth boundary. For every prescribed constant vector $u_{\infty } \ne 0$ and every external force $f \in \dot{H}_2^{-1} (\varOmega )$ , Leray (J. Math. Pures. Appl., 9:1–82, 1933) constructed a weak solution $u $ with $\nabla u \in L_2 (\varOmega )$ and $u - u_{\infty } \in L_6(\varOmega )$ . Here $\dot{H}^{-1}_2 (\varOmega )$ denotes the dual space of the homogeneous Sobolev space $\dot{H}^1_{2}(\varOmega ) $ . We prove that the weak solution $u$ fulfills the additional regularity property $u- u_{\infty } \in L_4(\varOmega )$ and $u_\infty \cdot \nabla u \in \dot{H}_2^{-1} (\varOmega )$ without any restriction on $f$ except for $f \in \dot{H}_2^{-1} (\varOmega )$ . As a consequence, it turns out that every weak solution necessarily satisfies the generalized energy equality. Moreover, we obtain a sharp a priori estimate and uniqueness result for weak solutions assuming only that $\Vert f\Vert _{\dot{H}^{-1}_2(\varOmega )}$ and $|u_{\infty }|$ are suitably small. Our results give final affirmative answers to open questions left by Leray (J. Math. Pures. Appl., 9:1–82, 1933) about energy equality and uniqueness of weak solutions. Finally we investigate the convergence of weak solutions as $u_{\infty } \rightarrow 0$ in the strong norm topology, while the limiting weak solution exhibits a completely different behavior from that in the case $u_{\infty } \ne 0$ .  相似文献   

14.
We characterize all Siegel cusp forms of degree $n$ and large weight $k$ by the growth of their Fourier coefficients. More precisely we prove, among other related results, that if the Fourier coefficients of a modular form on the congruence subgroup $\Gamma _0^n(N)$ of square–free level $N$ satisfy the “Hecke bound” at the cusp $\infty $ , then it must be a cusp form, provided $k >2n+1$ .  相似文献   

15.
16.
Let $(Q(k):k\ge 0)$ be an $M/M/1$ queue with traffic intensity $\rho \in (0,1).$ Consider the quantity $$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$ for any $p>0.$ The ergodic theorem yields that $S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]$ , where $Q(\infty )$ is geometrically distributed with mean $\rho /(1-\rho ).$ It is known that one can explicitly characterize $I(\varepsilon )>0$ such that $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$ In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$ where $C(p)>0$ is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.  相似文献   

17.
For $x\in [0,1)$ x ∈ [ 0 , 1 ) , let $x=[a_1(x), a_2(x),\ldots ]$ x = [ a 1 ( x ) , a 2 ( x ) , ... ] be its continued fraction expansion with partial quotients $\{a_n(x), n\ge 1\}$ { a n ( x ) , n ≥ 1 } . Let $\psi : \mathbb{N } \rightarrow \mathbb{N }$ ψ : N → N be a function with $\psi (n)/n\rightarrow \infty $ ψ ( n ) / n → ∞ as $n\rightarrow \infty $ n → ∞ . In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set $$\begin{aligned} E(\psi ):=\left\{ x\in [0,1): \lim _{n\rightarrow \infty }\frac{1}{\psi (n)}\sum _{j=1}^n\log a_j(x)=1\right\} \end{aligned}$$ E ( ψ ) : = x ∈ [ 0 , 1 ) : lim n → ∞ 1 ψ ( n ) ∑ j = 1 n log a j ( x ) = 1 is completely determined without any extra condition on $\psi $ ψ . This fills a gap of the former work in Fan et al. (Ergod Theor Dyn Syst 29:73–109, 2009).  相似文献   

18.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

19.
In this paper, we derive sharp estimates and asymptotic results for moment functions on Jacobi type hypergroups. Moreover, we use these estimates to prove a central limit theorem (CLT) for random walks on Jacobi hypergroups with growing parameters $\alpha ,\beta \rightarrow \infty $ . As a special case, we obtain a CLT for random walks on the hyperbolic spaces ${H}_d(\mathbb F )$ with growing dimensions $d$ over the fields $\mathbb F =\mathbb R ,\ \mathbb C $ or the quaternions $\mathbb H $ .  相似文献   

20.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号