首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
潘洪哲  徐明  陈丽  孙媛媛  王永龙 《物理学报》2010,59(9):6443-6449
采用基于密度泛函理论的广义梯度近似(GGA),对不同尺寸(N=2—11)的单层正三角锯齿型石墨烯量子点(ZN -GNDs)的结构进行优化,得到与实验数据较好符合的晶格常数,进一步计算得到不同尺寸下体系的自旋多重度、磁矩、电子态密度以及自旋电子密度.结果表明:所有体系都呈现金属性,在尺寸较小的体系中量子尺寸效应对电子结构的影响比较明显;与单层石墨烯片一样,sp2杂化作用和非键态电子在量子点中仍起到非常重要的作用;费米能级上有自旋向上的电子分布,体系的 关键词: 石墨烯 量子点 电子结构 磁性  相似文献   

2.
冯东海  贾天卿  徐至展 《中国物理》2003,12(9):1016-1020
The energy levels of zinc-blende GaN quantum dots (QDs) are studied within the framework of the effective-mass envelope-function approximation. The dependence of the energy of electron and hole states on the quantum dot (QD) size is presented. The selection rules for optical transitions are given and the oscillator strengths of the dipole-allowed transitions for various QD radii are calculated with the wavefunctions of quantized energy levels. The theoretical absorption spectrum of GaN QDs is in good agreement with the existing experimental result.  相似文献   

3.
利用密度泛函理论在B3LYP/6-31G(d)基组水平上研究了具有zigzag边界的石墨烯量子点,结果表明不同大小的石墨烯量子点的基态都是具有磁性的自旋三重态.其磁性一方面来源于zigzag边界上占有凸出位置的碳原子,另一方面来源于带有孤对电子的碳原子.从整体上看,除6b结构外,其他结构的能隙随着苯环数量的增加逐渐减小,而附加电荷却使体系能隙明显减小.用含时密度泛函理论(TD-DFT)对能隙为3.83 eV的由六个苯环排列成的三角形结构进行了激发态的计算,发现第十七激发态强度最大,能量为3.93 eV,对 关键词: 石墨烯量子点 磁性 能隙 激发态  相似文献   

4.
We address theoretically the electronic transport through graphene quantum dots with the emphasis on the transmission phase. Analytical and numerical results are presented regarding the existence – or not – of a π lapse of the transmittance phase (and, consequentially, a Fano zero in the transmittance) at the charge neutrality point. A simple universal criterium is found, the phase lapses being always present if the contact sites belong to the same sub‐lattice. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
6.
By performing density functional theory calculations, we studied the quantum confinement in charged graphene quantum dots (GQDs), which is found to be clearly edge and shape dependent. It is found that the excess charges have a large distribution at the edges of the GQD. The resulting energy spectrum shift is very nonuniform and hence the Coulomb diamonds in the charge stability diagram vary irregularly, in good agreement with the observed nonperiodic Coulomb blockade oscillation. We also illustrate that the level statistics of the GQDs can be described by a Gaussian distribution, as predicted for chaotic Dirac billiards.

  相似文献   


7.
用有效质量近似和少体物理方法计算了在抛物势中,参杂(一个带正电荷)GaAs量子点中有7个极化电子时的本征能量和本征波函数,并从本征波函数中提取的一体、二体密度函数方法得到了电子结构的直观图像,用对称性对量子点中库仑相互作用能和电子结构进行了分析。  相似文献   

8.
This paper reviews a microscopic model of basic electron-hole pair excitation processes in strongly confined semiconductor quantum dots (QD) and their influence on the optical QD properties. The effects of valence band mixing, Coulomb interaction, and surface polarization are taken into account. The exciton and biexciton wave functions and energies are obtained using a numerical diagonalization method. The computed optical spectra, such as absorption, gain, pump-probe, and two-photon absorption, agree well with experiments.  相似文献   

9.
We derive effective tight-binding model for geometrically optimized graphene quantum dots and based on it we investigate corresponding changes in their optical properties in comparison to ideal structures. We consider hexagonal and triangular dots with zigzag and armchair edges. Using density functional theory methods we show that displacement of lattice sites leads to changes in atomic distances and in consequence modifies their energy spectrum. We derive appropriate model within tight-binding method with edge-modified hopping integrals. Using group theoretical analysis, we determine allowed optical transitions and investigate oscillatory strength between bulk–bulk, bulk–edge and edge–edge transitions. We compare optical joint density of states for ideal and geometry optimized structures. We also investigate an enhanced effect of sites displacement which can be designed in artificial graphene-like nanostructures. A shift of absorption peaks is found for small structures, vanishing with increasing system size.  相似文献   

10.
We present a theory to simulate a coherent GaN QD with an adjacent pure edge threading dislocation by using a finite element method. The piezoelectric effects and the strain modified band edges are investigated in the framework of multi-band $\bm k\cdot \bm p$ theory to calculate the electron and the heavy hole energy levels. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The results indicate that the strain distribution of the threading dislocation affects the electronic structure. Moreover, the ground state transition behaviour is also influenced by the position of the adjacent threading dislocation.  相似文献   

11.
姚志东  李炜  高先龙 《物理学报》2012,61(11):117105-117105
基于有限差分方法, 数值求解了Dirac方程, 研究了垂直磁场下的点缺陷扶手型 石墨烯 量子点的能谱结构, 分析了尺寸大小对带隙的影响. 与无磁场时具有一定带隙 (带隙的大小与半径成反比) 的量子点相比, 在外加有限磁场下, 能谱中出现朗道能级, 最低朗道能级能量为零并与磁场强度无关, 并且朗道能级的简并度随着磁场的增加而增加. 进一步的计算表明, 最低朗道能级的简并度与磁场成线性关系, 与半径的平方成线性关系. 本文工作对基于石墨烯量子点的器件设计具有一定的指导意义.  相似文献   

12.
We have performed Hartree-Fock calculations of the electronic structure of N ≤ 10 electrons in a quantum dot modeled with a confining Gaussian potential well. We discuss the conditions for the stability of N bound electrons in the system. We show that the most relevant parameter determining the number of bound electrons is V 0 R 2. Such a feature arises from widely valid scaling properties of the confining potential. Gaussian Quantum dots having N = 2, 5, and 8 electrons are particularly stable in agreement with the Hund rule. The shell structure becomes less and less noticeable as the well radius increases.   相似文献   

13.
Optical properties of semiconductor quantum dots in magnetic fields are reviewed. A theory is described based on a multi-band effective-mass approximation with a nonparabolic conduction electron dispersion, the direct Coulomb interaction, and the electron-hole exchange interaction taken into account. The transition from the quantum-confined Zeeman effect for a weak magnetic field to the quantum-confined Paschen-Back effect to a strong magnetic field is discussed in comparison with atomic spectra in magnetic fields. Experimental results of the optical properties of isolated CuCl, CdSSe, and Si quantum dots in magnetic fields are also discussed in conjunction with the theoretical results.  相似文献   

14.
郑加金  王雅如  余柯涵  徐翔星  盛雪曦  胡二涛  韦玮 《物理学报》2018,67(11):118502-118502
以等离子增强化学气相沉积法制备的石墨烯作为导电沟道材料,将其与无机CsPbI_3钙钛矿量子点结合,设计并制备了石墨烯-钙钛矿量子点场效应晶体管光电探测器.研究和分析了石墨烯作为场效应晶体管的电学特性及其与钙钛矿量子点结合作为光电探测器的光电特性.结果表明,石墨烯在场效应晶体管中表现出良好的电学性质,其与钙钛矿量子点的结合对波长为400 nm的光辐射具有明显的光响应,在光强为12μW时器件光生电流最大为64μA,响应率达6.4 A·W~(-1),对应的光电导增益和探测率分别为3.7×10~4,6×10~7Jones(1 Jones=1 cm·Hz~(1/2)·W~(-1)).  相似文献   

15.
We report a facile method of synthesizing graphene quantum dots(GQDs) with tunable emission. The as-prepared GQDs each with a uniform lateral dimension of ca. 6 nm have fine solubility and high stability. The photoluminescence mechanism is further investigated based on the surfacestructure and the photoluminescence behaviors. Based on our discussion, the green fluorescence emission can be attributed to the oxygen functional groups, which could possess broad emission bands within the π –π * gap. This work is helpful to explain the vague fluorescent mechanism of GQDs, and the reported synthetic method is useful to prepare GQDs with controllable fluorescent colors.  相似文献   

16.
Graphene decorated with graphene quantum dots (G-D-GQDs) have been successfully synthesized using solvothermal cutting of graphene oxide. The incorporation of G-D-GQDs in polyvinyledene fluoride (PVDF) matrix shows the total EMI shielding effectiveness (SET) of 31 dB at 8 GHz. The main mechanism of high EMI shielding effectiveness is reflection and absorption of EM radiation. The high absorption of EM radiation is due to tunneling of electrons from GQDs. Further, decoration of G-D-GQDs with conducting Ag nanoparticles (G-D-GQDsAg) enhances the SET value to 43 dB at 8 GHz of PVDF/G-D-GQDsAg nanocomposite, due to increase in electrical conductivity of PVDF/G-D-GQDsAg nanocomposite and enhanced dispersion of G-D-GQDsAg in PVDF matrix. The incorporation of G-D-GQDs and G-D-GQDsAg in PVDF matrix also increases the thermal stability and crystallinity of PVDF. The increase in thermal stability and crystallinity are more for PVDF/G-D-GQDsAg nanocomposite as compare to PVDF/G-D-GQDs nanocomposite, due to better dispersion of G-D-GQDsAg in PVDF matrix. Thus, PVDF/G-D-GQDsAg nanocomposite having high SET value can shield 99.9% of electromagnetic radiation in X-band range, which make it suitable for EMI shielding application for consumer electronic equipment’s.  相似文献   

17.
18.
A theory of an optical vector soliton of self-induced transparency in an ensemble of semiconductor quantum dots is considered. By using the perturbative reduction method, the system of the Maxwell–Liouville equations is reduced to the two-component coupled nonlinear Schrödinger equations. It is shown that a distribution of transition dipole moments of the quantum dots and phase modulation changes significantly the pulse parameters. The shape of the optical two-component vector soliton with the sum and difference of the frequencies in the region of the carrier frequency is presented. The vector soliton can be reduced to the breather solution of self-induced transparency with a different profile. Explicit analytical expressions in the presence of single-excitonic and biexcitonic transitions for the optical vector soliton are obtained with realistic parameters which can be reached in current experiments.  相似文献   

19.
李杰森  李志兵  姚道新 《中国物理 B》2012,21(1):17302-017302
We study an array of graphene nano sheets that form a two-dimensional S=1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed.  相似文献   

20.
We study an array of graphene nano sheets that form a two-dimensional S=1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号