首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Zinc-diethylenetriamine (Zn-dien) N-glycoside complexes of four 1,4 and four 1,6 linked disaccharides are prepared. Each reaction mixture is ionized by electrospray and the resulting species [Zn(dien)(disaccharide)-H]+ is allowed to undergo collision-induced dissociation in a quadrupole ion trap. An MS3 analysis is used to differentiate alpha versus beta anomericity of the glycosidic bond in the disaccharide moiety. In addition, the MS2 and MS3 spectra can be used together to determine the linkage position of this glycosidic bond.  相似文献   

2.
A tandem electrospray mass spectrometric (MS(n)) technique for the analysis of N-acetylated hexose carbohydrates using ferrocene boronate (F(c)Bor) derivatization was developed. The biologically important N-acetyl hexosamines can be readily distinguished utilizing this technique. The analysis is made possible by utilizing the inherent electrochemical properties of the electrospray device to produce oxidized, pre-formed single-electron ferrocenyl ions in a non-aqueous solvent system. The electrospray device was modified using a custom built cell consisting of concentric stainless steel tubes, which produced an enhanced signal for the molecular ion of each analyte species. The MS(2) spectra derived from isomeric populations of ferrocenyl boronic esters of these carbohydrates when generated under the same conditions possessed features unique to each sugar allowing easy differentiation between a number of N-acetyl hexosamine isomers.  相似文献   

3.
Noncovalent protein–ligand and protein–protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein–ligand interactions. In this way the site of protein–ligand interfaces can be identified. To date, protein–ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein–peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein–peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide–protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein–protein interfaces.  相似文献   

4.
The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein’s binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide–carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.  相似文献   

5.
The introduction of chip-based electrospray (ESI) ion sources into biological mass spectrometry (MS) addressed the fundamental issue of how to analyze minute amounts of complex biological systems. The automation of sample delivery into the MS combined with the chip-based ESI allows for high quality bioanalysis in a high-throughput fashion. These advantages have already been demonstrated in proteomics, direct screening of drugs and drug discovery. As part of our continuing effort to implement automated chip-based mass spectrometry into the field of complex carbohydrate analysis, we hereby report the development of a chipESI MS and MS/MS methodology for the screening of gangliosides. A strategy to characterize a complex ganglioside mixture from human cerebellar tissue, by automated ESIchip-quadrupole time-of-flight (QTOF) MS and MS/MS is presented here. The feasibility of this method, and the general experimental requirements for automated chipESI MS analysis of these carbohydrate species is described.  相似文献   

6.
The development of a sensitive assay for the quantitative analysis of carbohydrates from human plasma using LC/MS/MS is described in this paper. After sample preparation, carbohydrates were cationized by Cs(+) after their separation by normal phase liquid chromatography on an amino based column. Cesium is capable of forming a quasi-molecular ion [M + Cs](+) with neutral carbohydrate molecules in the positive ion mode of electrospray ionization mass spectrometry. The mass spectrometer was operated in multiple reaction monitoring mode, and transitions [M + 133] --> 133 were monitored (M, carbohydrate molecular weight). The new method is robust, highly sensitive, rapid, and does not require postcolumn addition or derivatization. It is useful in clinical research for measurement of carbohydrate molecules by isotope dilution assay.  相似文献   

7.
The incorporation of specialised carbohydrate affinity ligand methacrylamido phenylboronic acid in polyacrylamide gels for fluorophore-assisted carbohydrate electrophoresis greatly improved the effective separation of saccharides that show similar mobilities in standard electrophoresis. Polyacrylamide gel electrophoresis using methacrylamido phenylboronic acid in low loading (typically 0.5-1% dry weight) was unequivocally shown to alter retention of labelled saccharides depending on their boronate affinity. While conventional fluorophore-assisted carbohydrate electrophoresis of 2-aminoacridone labelled glucose oligomers showed an inverted parabolic migration, an undesired trait of small oligosaccharides labelled with this neutral fluorophore, boron affinity saccharide electrophoresis separation of these carbohydrates completely restored their predicted running order, based on their charge/mass ratio, and resulted in improved separation of the analyte saccharides. These results exemplify boron affinity saccharide electrophoresis as an important new technique for analysing carbohydrates and sugar-containing molecules.  相似文献   

8.
Nine monosaccharides and four disaccharides were mass analyzed using a quadrupole time-of-flight tandem mass spectrometer combined with an electrospray ionization source. Product ion mass spectra of deprotonated, protonated, and sodiated saccharides were observed and were compared within each group of saccharides. Each of the deprotonated pentoses, hexoses and disaccharides yielded a significantly different product ion mass spectrum with the exception of alpha-lactose and beta-lactose. The disaccharides alpha- and beta-lactose differ only at the glycosidic linkage. Product ion mass spectra of protonated and sodiated alpha- and beta-lactose were indistinguishable also.  相似文献   

9.
A method has been developed for the semiquantitative analysis of the catechol estrogens, 2- and 4-hydroxyestradiol, using tandem electrospray mass spectrometry in a quadrupole ion trap mass analyzer. The implication of catechol estrogens in the biogenesis of breast and prostate cancer makes these labile lipophilic compounds important analytical targets. Ferrocene boronic acid is reacted with 2- and 4-hydroxyestradiol to form their cyclic boronate esters. Sample ionization is accomplished during the electrospray process by a one-electron oxidation of the ferrocene functionality to form the radical cation. The analysis depends on a non-aqueous solvent system consisting of 90% acetonitrile and 10% dichloromethane with 100 microM lithium triflate as the supporting electrolyte. The sensitivity of the analysis is greatly increased by the use of a novel electrospray interface with a large surface area stainless steel electrode coupled to a pulled fused-silica needle. Collision-induced dissociation of the selected molecular ion within the ion trap produces fragment ion spectra that can be used to distinguish between the two isobaric isomers and ultimately determine the relative amounts in mixtures containing both components. The method is sensitive to analyte concentrations in the low nM range.  相似文献   

10.
Noncovalent interactions of cucurbit[6]uril (CB[6]) with haloacetate and halide anions are investigated in the gas phase using electrospray ionization ion mobility mass spectrometry. Strong noncovalent interactions of monoiodoacetate, monobromoacetate, monochloroacetate, dichloroacetate, and trichloroacetate on the exterior surface of CB[6] are observed in the negative mode electrospray ionization mass spectra. The strong binding energy of the complex allows intramolecular SN2 reaction of haloacetate, which yields externally bound CB[6]-halide complex, by collisional activation. Utilizing ion mobility technique, structures of exteriorly bound CB[6] complexes of haloacetate and halide anions are confirmed. Theoretically determined low energy structures using density functional theory (DFT) further support results from ion mobility studies. The DFT calculation reveals that the binding energy and conformation of haloacetate on the CB[6] surface affect the efficiency of the intramolecular SN2 reaction of haloacetate, which correlate well with the experimental observation.  相似文献   

11.
A complicating factor in analyzing electrospray ionization mass spectra of intact macromolecular heterogeneous protein complexes is the potential overlap of ions from different species present in solution. Therefore, it is often not possible to assign all ion signals. With the aim of allowing the more efficient and comprehensive analysis of very complex mass spectra of intact heterogeneous protein complexes we developed a software program: SOMMS. The program uses simple user input parameters together with Gaussian curve fitting to simulate putative mass spectra of protein (sub)complexes within a specified charge state window. In addition, the program can simulate spectra for heterogeneous protein complexes using bi- and multinomial distributions and it can calculate zero-charge spectra and relatively quantify the abundance of each component in a mixture. As a proof of concept we analyzed the complex mass spectra of alpha-glutamate synthase and alphabeta-glutamate synthase from Azosprillum brasilense. Using our program we could determine that alpha-glutamate synthase is in equilibrium between its dimeric, tetrameric, hexameric and dodecameric conformation, whereas alphabeta-glutamate synthase forms up to 15 different heterooligomeric assemblies composed of alpha- and beta-subunits. Thus, SOMMS allows resolving stoichiometries and oligomeric states of protein complexes even from very complicated mass spectra. These complexes could not be assigned by using maximum entropy calculations. We compared our mass spectrometry data on glutamate synthases with available X-ray, small-angle X-ray scattering and size-exclusion chromatography data.  相似文献   

12.
单糖衍生物的电喷雾质谱裂解规律研究   总被引:1,自引:1,他引:0  
以1-(2-萘基)-3-甲基-5-吡唑啉酮(NMP)作单糖标识剂, 经在线串联的LC-ESI-MS建立了单糖衍生物的电喷雾质谱裂解方法.衍生物在质谱裂解中糖类化合物特有的规范信息.借助糖类化合物在ESI-MS条件下表现出的分子离子峰m/z [M H] , 及在ESI-MS/MS条件下呈现出的特征碎片离子峰m/z 473, 可有效地确定出单糖类化合物的组成. 尽管一些脂肪醛和芳香醛也能同时被标识, 然而在质谱条件下不产生m/z 473的特征碎片离子峰, 且它们的洗脱远在糖类组分之后, 因此不干扰糖类化合物的分离和结构确定.通过建立的LC-ESI-MS方法, 对水解蜂花粉中的单糖进行了分析.结果表明: 水解的蜂花粉中含甘露糖(Man)、半乳糖醛酸(GalUA)、葡萄糖醛酸(GlcUA)、鼠李糖(Rha)、葡萄糖 (Glc)、半乳糖(Gal)、阿拉伯糖(Ara)、木糖(Xyl)和岩藻糖(Fuc).本方法为环境样品中单糖类化合物的确定提供了准确、可靠的技术手段.  相似文献   

13.
Electrospray ionization with a forward-geometry magnetic sector mass spectrometer was used for collisionally activated dissociation studies of multiply charged polypeptides and for studying non-covalently bound protein systems. The high-resolution capabilities of a high-performance instrument allow the resolution of isotopic contributions for product ions and molecular ion species. Determination of product ion charge states by this method reduces difficulties in the interpretation of product ion mass spectra from multiply charged precursors, which are generated either in the atmospheric pressure/vacuum electrospray interface or in the collision chamber of the mass spectrometer. Extended tandem mass spectrometric experiments have the potential for sequencing larger polypeptides. However, evidence for isomerization of gas-phase product ions from substance P and substance P analogues was observed, complicating the interpretation of product ion spectra. Non-covalent complexes can also be studied by electrospray ionization magnetic sector MS. The higher m/z range of such an instrument is a major advantage for studying weakly bound systems, such as heme–protein systems (myoglobin, hemoglobin) and protein aggregates (concanavalin A), because of their tendency to form complex ions with relatively low charge states.  相似文献   

14.
Over the last decade, 1,2-metallate rearrangement of boronate complex has been dominating the literature of organoboron chemistry for the construction of very important C−C and C−boron bonds. Owing to the coordinative unsaturated nature of the boron atom, a nucleophile can attack on boron center for the formation of a boronate complex, which triggers 1,2-migration under electrophilic activation at the α-carbon. Apart from using stochiometric electrophilic activating reagents, several catalytic methods using transition metals in the presence or absence of light have been reported. The 1,2-migration of boronate complexes allows synthesis of many different classes of racemic and chiral compounds including a wide range of substituted heterocycles. Synthesis of chiral and achiral substituted heterocycles by using 1,2-metallate rearrangement of boronate complexes has been extensively reported by several groups owing to its prevalence in medicinal chemistry. This minireview highlights the methods known to date for the synthesis of heteroaryls by using 1,2-migration of boronate complexes, organized in a chronological manner.  相似文献   

15.
In this work we describe a micro-electrospray ionization source equipped with an atmospheric pressure external ion shutter. The solenoid-activated shutter prevents the electrospray plume from entering the inlet capillary unless triggered to the 'open' position. When in the 'closed' position, a stable electrospray plume is maintained between the electrospray ionization (ESI) emitter and the electrically isolated face of the shutter. When the shutter is triggered, a 'slice' of ions is allowed to enter the inlet capillary and is subsequently accumulated in an external ion reservoir comprised of a radio frequency only (rf-only) hexapole and a pair of electrostatic elements. Following ion accumulation in the external ion reservoir, intact molecular ions of proteins, oligonucleotides, and noncovalent complexes can be stored for extended intervals (>30 minutes) prior to being transferred to the Fourier transform ion cyclotron resonance (FTICR) trapped ion cell for mass analysis. By introducing reactive gases directly into the external ion reservoir during the storage interval, ion-molecule reactions, such as H/D exchange, can be performed at high effective pressures. This scheme obviates the need for the long reaction times and delays associated with restoring base pressure in the trapped ion cell and allows H/D exchange reactions to be conducted in a fraction of the time required using conventional in-cell exchange approaches. The back face of the shutter arm contains an elastomeric material which can be positioned to seal the inlet to the mass spectrometer resulting in lower base pressure in the ion reservoir and the FTICR cell. Additionally, it is noted that blocking the ESI plume during non-accumulation events results in reduced fouling of the source electrodes and longer times between required source cleaning.  相似文献   

16.
A challenging aspect of structural elucidation of carbohydrates is gaining unambiguous information for anomers, linkage, and position isomers. Such isomers with identical mass can't be easily distinguished in mass spectrometry and a separation step is required prior to mass spectrometry identification. In our laboratory, gas-phase separation and differentiation of anomers, linkage, and position isomers of disaccharides was achieved using High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). The FAIMS method responds to changes in ion mobility at high field rather than absolute values of ion mobility, and was shown to provide efficient separation and identification of disaccharide isomers at high sensitivity. Separation of analyzed disaccharide isomers can be accomplished at low nM level in a matter of seconds without sample purification or fractionation. Capability for examining a large population of ionic species of disaccharides by this method allowed for correlating structural details of disaccharide isomers with their separation properties in FAIMS. Results for disaccharide isomers indicate that this method could be applied to a larger group of carbohydrates.  相似文献   

17.
Bioactive botanicals contain natural compounds with specific biological activity, such as antibacterial, antioxidant, immune stimulating, and taste improving. A full characterization of the chemical composition of these botanicals is frequently necessary. A study of small carbohydrates from the plant materials of 18 bioactive botanicals is further described. The study presents the identification of the carbohydrate using a gas chromatographic‐mass spectrometric analysis that allows detection of molecules as large as maltotetraose, after changing them into trimethylsilyl derivatives. A number of carbohydrates in the plant (fructose, glucose, mannose, sucrose, maltose, xylose, sorbitol, and myo‐, chiro‐, and scyllo‐inositols) were quantitated using a novel liquid chromatography with tandem mass spectrometric technique. Both techniques involved new method developments. The gas chromatography with mass spectrometric analysis involved derivatization and separation on a Rxi®‐5Sil MS column with H2 as a carrier gas. The liquid chromatographic separation was obtained using a hydrophilic interaction type column, YMC‐PAC Polyamine II. The tandem mass spectrometer used an electrospray ionization source in multiple reaction monitoring positive ion mode with the detection of the adducts of the carbohydrates with Cs+ ions. The validated quantitative procedure showed excellent precision and accuracy allowing the analysis in a wide range of concentrations of the analytes.  相似文献   

18.
We have developed a method to analyze stable carbon isotope ((13)C/(12)C) ratios in a variety of carbohydrates using high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS). The chromatography is based on strong anion-exchange columns with low strength NaOH eluents. An eluent concentration of 1 mM resulted in low background signals and good separation of most of the typical plant neutral carbohydrates. We also show that more strongly bound carbohydrates such as acidic carbohydrates can be separated by inclusion of NO(3) (-) as an inorganic pusher ion in the eluent. Analyses of neutral carbohydrate concentrations and their stable carbon isotope ratios are shown for plant materials and marine sediment samples both at natural abundance and for (13)C-enriched samples. The main advantage of HPLC/IRMS analysis over traditional gas chromatography based methods is that no derivatization is needed resulting in simple sample treatment and improved accuracy and reproducibility.  相似文献   

19.
This work compares several different methods of site-specific analysis of glycoproteins using electrospray mass spectrometry. The glycoprotein, oLHalpha (ovine luteinizing hormone, alpha-subunit) was chosen as an appropriate example protein for these studies because of its biological relevance and extreme microheterogeneity. More than 20 unique glycoforms were detected for this glycoprotein at the Asn(56) site of oLHalpha. The carbohydrates present at this site affect receptor binding affinity, so understanding the great variety in the composition of these carbohydrates is important in studying ligand binding interactions. MS data was acquired on a quadrupole ion trap, a triple quadrupole, and a quadrupole time of flight mass spectrometer, and carbohydrate composition at the Asn(56) site of oLHalpha was determined using these instruments. Additionally, neutral loss and precursor ion scanning modes were also used to identify the glycoforms present, and these techniques were compared to the standard MS data. Of the three instruments compared in the study, the qTOF mass spectrometer achieved the lowest sample consumption, but all three instruments were useful in profiling the glycopeptide composition.  相似文献   

20.
Gas-phase thermal dissociation experiments, implemented with blackbody infrared radiative dissociation (BIRD) and Fourier transform ion cyclotron resonance mass spectrometry, have been performed on a series of protonated and deprotonated 1:1 and protonated 1:2 protein-carbohydrate complexes formed by nonspecific interactions during the nanoflow electrospray (nanoES) ionization process. Nonspecific interactions between the proteins bovine carbonic anhydrase II (CA), bovine ubiquitin (Ubq), and bovine pancreatic trypsin inhibitor and several carbohydrates, ranging in size from mono- to tetrasaccharides, have been investigated. Over the range of temperatures studied (60-190 degrees C), BIRD of the protonated and deprotonated complexes proceeds exclusively by the loss of the carbohydrate in its neutral form. The rates of dissociation of the 1:1 complexes containing a mono- or disaccharide decrease with reaction time, suggesting the presence of two or more kinetically distinct structures produced during nanoES or by gas-phase processes. In contrast, the 1:1 complexes of the tri- and tetrasaccharides exhibit simple first-order dissociation kinetics, a result that, on its own, is suggestive of a single preferred carbohydrate binding site or multiple equivalent sites in the gas phase. A comparative analysis of the dissociation kinetics measured for protonated 1:1 and 1:2 complexes of Ubq with alphaTal[alphaAbe]alphaMan further supports the presence of a single preferred binding site. However, a similar analysis performed on the complexes of CA and alphaTal[alphaAbe]alphaMan suggests that equivalent but dependent carbohydrate binding sites exist in the gas phase. Analysis of the Arrhenius activation parameters (E(a) and A) determined for the dissociation of 1:1 complexes of CA with structurally related trisaccharides provides evidence that neutral intermolecular hydrogen bonds contribute, at least in part, to the stability of the gaseous complexes. Surprisingly, the E(a) values for the complexes of the same charge state are not sensitive to the structure (primary or higher order) of the protein, suggesting that the carbohydrates are able to form energetically equivalent interactions with the various functional groups presented by the protein. For a given protein-carbohydrate complex, the dissociation E(a) is sensitive to charge state, initially increasing and then decreasing with increasing charge. It is proposed that both ionic and neutral hydrogen bonds stabilize the nonspecific protein-carbohydrate complexes in the gas phase and that the relative contribution of the neutral and ionic interactions is strongly influenced by the charge state of the complex, with neutral interactions dominating at low charge states and ionic interactions dominating at high charge states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号