首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncovering the physics of electroweak symmetry breaking (EWSB) is the raison-d’etre of the LHC. Flavor questions, it would seem, are of minor relevance for this quest, apart from their role in constraining the possible structure of EWSB physics. In this short review article, we outline, using flavor-dependent slepton physics as an example, how flavor can affect both searches for supersymmetry, and future measurements aimed at understanding the nature of any new discoveries. If the production cross-sections for supersymmetry are relatively low, as indicated by the fact that it has not revealed itself yet in standard searches, the usual assumptions about the superpartner spectra need rethinking. Furthermore, one must consider more intricate searches, such as lepton-based searches, which could be susceptible to flavor effects. We start by reviewing the flavor structure of existing frameworks for mediating supersymmetry breaking, emphasizing flavor-dependent models proposed recently. We use the kinematic endpoints of invariant mass distributions to demonstrate how flavor dependence can impact both searches for supersymmetry and the Inverse Problem. We also discuss methods for measuring small-mass splittings and mixings at the LHC, both in models with a neutralino LSP and in models with a charged slepton (N)LSP.  相似文献   

2.
The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.  相似文献   

3.
JO?O FIRMINO DA COSTA 《Pramana》2012,79(5):1215-1218
Results of searches for supersymmetry in events with significant missing transverse energy and two isolated leptons with the ATLAS experiment at the LHC are presented. Three analyses are presented here, the first two are analyses with leptons of opposite charge and same charge, respectively. The third one is an analysis that searches for an excess of same-flavour opposite-charge lepton pairs over those of different-flavour. Data corresponding to an integrated luminosity of 1 fb?1 are analysed.  相似文献   

4.
《Comptes Rendus Physique》2002,3(9):1235-1243
Motivations for new physics beyond the Standard Model are presented. The most successful and best motivated option, supersymmetry, is described in some detail, and the associated searches performed at LEP are reviewed. These include searches for additional Higgs bosons and for supersymmetric partners of the standard particles. These searches constrain the mass of the lightest supersymmetric particle which could be responsible for the dark matter of the universe. To cite this article: P. Binétruy, J.-F. Grivaz, C. R. Physique 3 (2002) 1235–1243.  相似文献   

5.
We discuss the Higgs sector of the supersymmetric standard model extended by a gauge singlet for the range of parameters, which is compatible with universal soft supersymmetry breaking terms at the GUT scale. We present results for the masses, couplings and decay properties of the lightest Higgs bosons, in particular with regard to Higgs boson searches at LEP. The prospects differ significantly from the ones within the MSSM.  相似文献   

6.
D. P. Roy 《Pramana》1995,45(1):293-312
I start with a brief introduction to the elementary particles and their interactions, Higgs mechanism and supersymmetry. The major physics objectives of the Tevatron and LHC colliders are identified. The status and prospects of the top quark, charged Higgs boson and superparticle searches are discussed in detail, while those of the neutral Higgs boson(s) are covered in a parallel talk by R.J.N. Phillips at this workshop.  相似文献   

7.
The existence of dark matter provides strong evidence for physics beyond the standard model. Extending the standard model with the Peccei–Quinn symmetry and/or supersymmetry, compelling dark-matter candidates appear. For the axion, the neutralino, the gravitino, and the axino, I review primordial production mechanisms, cosmological and astrophysical constraints, experimental searches, and prospects for experimental identification.  相似文献   

8.
D. P. Roy 《Pramana》1995,45(Z1):293-312
I start with a brief introduction to the elementary particles and their interactions, Higgs mechanism and supersymmetry. The major physics objectives of the Tevatron and LHC colliders are identified. The status and prospects of the top quark, charged Higgs boson and superparticle searches are discussed in detail, while those of the neutral Higgs boson(s) are covered in a parallel talk by R.J.N. Phillips at this workshop.  相似文献   

9.
We discuss the constraints on supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h 0 and the CP-odd A 0 bosons from these searches are covering a larger fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination for the lightest Higgs boson in the range 123<M h <127?GeV, inspired by the intriguing hints reported by the ATLAS and CMS Collaborations, as well as those of a non-observation of the lightest Higgs boson for MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.  相似文献   

10.
D P ROY 《Pramana》2011,76(5):741-756
I discuss LHC physics in the historical perspective of the progress in particle physics. After a recap of the Standard Model (SM) of particle physics, I discuss the high energy colliders leading up to LHC and their role in the discovery of these SM particles. Then I discuss the two main physics issues of LHC, i.e. Higgs mechanism and supersymmetry. I briefly touch upon Higgs and SUSY searches at LHC along with their cosmological implications.  相似文献   

11.
《Physics letters. [Part B]》1997,415(2):161-169
In models where supersymmetry breaking is communicated into the visible sector via gauge interactions the lightest supersymmetric particle is typically the gravitino which is too light to account for cold dark matter. We point out that the lightest messenger sneutrinos with mass in the range of one to three TeV may serve as cold dark matter over most of the parameter space due to one-loop electroweak radiative corrections. However, in the minimal model this mass range has been excluded by the direct dark matter searches. We propose a solution to this problem by introducing terms that explicitly violate the messenger number. This results in low detection rate for both direct and indirect searches and allows messenger sneutrinos to be a valid dark matter candidate in a wide region of SUSY parameter space.  相似文献   

12.
Recent LHC data showed excesses of Higgs-like signals at the Higgs mass of around 125 GeV. This may indicate supersymmetric models with relatively heavy scalar fermions to enhance the Higgs mass. The desired mass spectrum is realized in the anomaly-mediated supersymmetry breaking model, in which the Wino can naturally be the lightest superparticle (LSP). We discuss possibilities for confirming such a scenario, particularly detecting signals from Wino LSP at direct detection experiments, indirect searches at neutrino telescopes and at the LHC.  相似文献   

13.
The history concerning an experimental verification of the standard model of particle physics is reviewed with special emphasis on results from experiments using the highest-energy particle colliders, namely, PETRA, LEP and LHC. This article covers physics subjects from discovering the gluon and precise measurements at LEP, to discovering the Higgs boson. It also covers some searches for physics beyond the standard model, particularly supersymmetry, as well as recent developments of some particle detectors that were used in those experiments.  相似文献   

14.
Where is SUSY?     
The searches for supersymmetry at the Large Hadron Collider (LHC) have so far yielded only null results and have considerably tightened the bounds on the sparticle masses. This has generated some skepticism in the literature regarding the ‘naturalness of SUSY’ which qualitatively requires some sparticles to be relatively light. Re-examining some of the bounds from LHC searches, it is argued with specific examples that the above skepticism is a red herring because (i) a quantitative and universally accepted definition of ‘naturalness’ is not available and (ii) even if some conventional definitions of naturalness is accepted at their face values, the alleged tension with the apparently stringent LHC bounds wither away once the strong assumptions, by no means compelling, underlying such bounds are relaxed.  相似文献   

15.
We investigate a new class of dark matter: superweakly interacting massive particles (super-WIMPs). As with conventional WIMPs, super-WIMPs appear in well motivated particle theories with naturally the correct relic density. In contrast to WIMPs, however, super-WIMPs are impossible to detect in all conventional dark matter searches. We consider the concrete examples of gravitino and graviton cold dark matter in models with supersymmetry and universal extra dimensions, respectively, and show that super-WIMP dark matter satisfies stringent constraints from big bang nucleosynthesis and the cosmic microwave background.  相似文献   

16.
The last 2 years has seen an immense amount of activity and results from the Large Hadron Collider (LHC). Most notable is the discovery of a new particle which may very well be the long sought Higgs boson associated with electroweak symmetry breaking. There have also been many (up to now) unsuccessful searches for new particles associated with supersymmetry. One of the most attractive candidates for dark matter is the lightest supersymmetric particle (LSP). The recent results from the LHC have had a dramatic impact on our expectations for the properties of the LSP. These results can be used to revise expectations for both direct and indirect detection of dark matter.  相似文献   

17.
We comment on some of the general thermostatistical properties of the global supersymmetry characterized by Grassmann parameters, which are shared by the ordinary supersymmetry as well as by the BRS supersymmetry associated with any gauge symmetry including local supersymmetry.  相似文献   

18.
We examine relation between neutrino oscillation parameters and prediction of lepton flavor violation, in light of deviations from tri-bimaximal mixing. Our study shows that upcoming experimental searches for lepton flavor violation process can provide useful implications for neutrino mass spectrum and mixing angles. With simple structure of heavy right-handed neutrino and supersymmetry breaking sectors, the discovery of τ→μγτμγ decay determines neutrino mass hierarchy if large (order 0.1) reactor angle is established.  相似文献   

19.
The stability of the Becchi-Rouet-Stora supersymmetry is studied on the basis of a simple non-gauge model invariant under BRS supersymmetry. The Nambu-Goldstone theorem is stated and the spontaneous breakdown of the BRS supersymmetry is illustrated by the above non-gauge model. This indicates that the dynamical stability of BRS supersymmetry in non-abelian gauge theories should also be carefully examined, if one takes the Faddeev-Popov lagrangian as a basis of the formal canonical treatment. We show that a better understanding of the Gribov problem is required to establish the stability of the BRS supersymmetry in non-abelian gauge theories to non-perturbative accuracy.  相似文献   

20.
We study the range of Higgs masses predicted by High-Scale Supersymmetry and by Split Supersymmetry, using the matching condition for the Higgs quartic coupling determined by the minimal field content. In the case of Split Supersymmetry, we compute for the first time the complete next-to-leading order corrections, including two-loop renormalization group equations and one loop threshold effects. These corrections reduce the predicted Higgs mass by a few GeV. We investigate the impact of the recent LHC Higgs searches on the scale of supersymmetry breaking. In particular, we show that an upper bound of 127 GeV on the Higgs mass implies an upper bound on the scale of Split Supersymmetry of about 108 GeV, while no firm conclusion can yet be drawn for High-Scale Supersymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号