首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a sample is locally excited with a highly focused raster-scanned beam of keV electrons, the variations of the work function across the surface can be monitored from the shift of the onset energy for secondary electron emission along a fixed energy scale. The performance of that onset technique of work function microscopy and its incorporation into scanning Auger microprobes is described. The potentialities of this extremely surface sensitive technique for structural and chemical microanalysis are demonstrated by different experimental examples comprising work function analysis of surface reactions, and sputter depth profiling with in-situ Auger and work function spectroscopy. Scanning work function microscopy for surface microanalysis is shown to supply a lateral resolution down to the 10 nm range with a detection limit below 10–2 of a monolayer.  相似文献   

2.
Work function spectroscopy (WFS) in a microprobe mode (scanning work function microscopy SWFM), or in conjunction with sputter depth profiling constitutes a useful supplementary method to other surface analytical techniques. The so-called onset technique of WFS utilizes the influence of the electronic work function of the sample on the onset of the energy distribution of the true secondary electrons. This technique can readily be incorporated into existing surface analytical instruments like Scanning Auger microprobes. WFS and Auger electron spectroscopy (AES) have been applied in-situ during sputter depth profiling of sulphur layers segregated on top of Cu(111), and of implantation profiles of Cs+ bombarded Si(111) with Ar+ ions of 1 keV. Because the onset technique for WFS takes advantage of the high intensity of the true secondary electrons, it is possible to use very low primary electron currents Ip. Employing a commercial instrument (PHI SAM 660) with a minimum spot size of 20 nm a lateral resolution of about 25 nm is achieved in the SWFM mode.  相似文献   

3.
Scanning near-field optical microscopy (SNOM) has become a widespread technique due to its promising ability of imaging with sub-micron resolution. Despite being developed over more than one decade, SNOM is still not a mature technique, which can be seen from the large number of recent publications describing instrumentational innovations. However, there are also many applications of near-field microscopy to the observation of thin organic film systems, which are supplementary to other techniques and demonstrate the usefulness of the technique.  相似文献   

4.
Summary Two different methods of electron work function measurements, the diode and the onset method, are described. Both methods can easily be incorporated in existing analytical equipments. With the diode method the work function changes are determined from the shift of the break points of characteristic retarding field lines. The onset method uses the shift of the onset of the secondary electron energy distribution due to work function changes. Several experimental examples are presented, which served as test for the work function measurement and mapping capabilities.
Oberflächenanalyse durch Austrittsarbeitsmessungen in einer Scanning-Auger-Mikrosonde
  相似文献   

5.
Scanning tunneling microscopy investigations of adsorption and film growth of various fullerenes on semiconductor and metal surfaces are reviewed. The fullerenes being studied are C60, C70, C84, Sc@C82 and Y@C82 and the substrates being used for adsorption are Si (111), Si (100), Ge (111), GaAs (110), GaAs (001), Au (111), Au (110), Au (100), Cu (111) and Ag (111) surfaces.  相似文献   

6.
7.
Scanning electrochemical microscopy (SECM) is a powerful technique that can provide chemical identity, quantification, and spatiotemporal information on biosurfaces. The ability of SECM for noninvasive and high-resolution electrochemical imaging has made it valuable for the study of cell phenotypes and functions. This review focuses on the latest advances of SECM technique for the biosurface imaging. The SECM measurements of different biomarkers, including oxygen consumption rate and enzyme activity of cell aggregates, redox state of cardiomyocytes, and bacterial metabolic activity, are introduced. The applicability of SECM on membrane permeability measurements, neurotransmitter measurements, and intracellular measurements is discussed.  相似文献   

8.
The scanning tunneling microscope is an ideal tool to study the local geometric and electronic structure of single supported metal clusters. Our experimental setup consists of an extraction type ion gun combined with a quadrupol mass spectrometer to deposit mass-selected metal cluster. ions. First results showing scanning tunneling microscopy pictures of sputtered aluminum clusters are presented.  相似文献   

9.
Scanning confocal photocurrent microscopy has been used to characterize carrier collection efficiency in lateral bulk heterojunction devices. By analyzing the photocurrent mappings within these devices, the lateral extents of the space charge regions has been measured and reported. Modulation via white light bias or increased voltage bias is also shown to increase the size of the space charge regions.  相似文献   

10.
The fundamentals of and recent advances in scanning electrochemical microscopy (SECM) are described. The focus is on applications of this method to studies of systems and processes of active current interest ranging from nanoelectrochemistry to electron transfer reactions and electrocatalysis to biological imaging.  相似文献   

11.
Adsorption of residual impurities from liquid media on various substrates was studied by scanning force microscopy. A new express method for controlling the purity of liquids was suggested.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2168-2173, November. 1995.The authors are sincerely grateful to T. Eriksson (Royal Institute of Technology, Stockholm, Sweden) for providing the samples of two-component films. The work of one of the authors (I. V. Yaminsky) was partially supported by the International Science Foundation (Grants N1C000 and N1C300).  相似文献   

12.
Summary The microfibrillar and lamellar morphologies in cold-drawn and cold-drawn/annealed high-density polyethylene sheets were observed by means of scanning electron microscopy. Differences in contrast on fracture surfaces for cold-drawn sheet are interpreted in terms of a preferential orientation of inter-microfibrillar tie molecules in the plane of the sheet brought about by the drawing mechanism. In annealed, cold-drawn sheet, stacks of lamellae were observed which showed twinned orientations of inclined lamellae. This roof-top structure is interpreted in terms of shear within the individual microfibrils during micronecking, and corresponds to the well-known 4-point small-angle X-ray pattern for this type of specimen. Light etching with fuming nitric acid was necessary in order to resolve the individual lamellar texture.With 9 figures  相似文献   

13.
Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.  相似文献   

14.
粘胶基碳纤维表面结构的STM研究   总被引:1,自引:0,他引:1  
本文建立了用具有原子级分辨能力的扫描隧道显微镜 (STM)研究粘胶基碳纤维 (RCF)表面结构的方法。在较大尺度的STM图像上 ,RCF表面显得很粗糙 ,“峰”和“谷”的特征非常明显。增大放大率时 ,发现了约10nm宽的条状结构 ,其排列与纤维轴成一定角度 (45°~ 90°)。首次获得了RCF原子级的STM图像 ,在原子级尺度上 ,其原子排列并不规则 ,相邻原子间距为 0 .14 2nm ,最近六元环中心的距离是 0 .2 5 3nm。与高定向降解石墨 (HOPG)的对比研究进一步表明RCF表面的碳网是变形的六元环结构  相似文献   

15.
A water soluble calixarene[4]arene 1 with four guanidinium substituents on the upper rim and propyl groups below was anchored in the propylamino coating of smooth silica particles, and a tricarboxylate-tripod porphyrin 2 of 2 nm height was attached to these cationic islands. The molecular complex with a height of 3 nm was unequivocally detected on the particles' surface by atomic force microscopy in the tapping mode. Although deposits of 1 (height: 1 nm) and 2 (height: 2 nm) were also evident on the smooth silica particles, 3 nm seems to be the minimal height to identify single objects. The soft surface of the particles not only allowed tight attachment of molecular edge amphiphiles by the hydrophobic effect but also immobilized the particles on the mica surface by amine-silicate interactions.  相似文献   

16.
Not only in electrochemistry but also in biology and in membrane transport, localized processes at solid-liquid or liquid-liquid interfaces play an important role at defect sites, pores, or individual cells, but are difficult to characterize by integral investigation. Scanning electrochemical microscopy is suitable for such investigations. After two decades of development, this method is based on a solid theoretical foundation and a large number of demonstrated applications. It offers the possibility of directly imaging heterogeneous reaction rates and locally modifying substrates by electrochemically generated reagents. The applications range from classical electrochemical problems, such as the investigation of localized corrosion and electrocatalytic reactions in fuel cells, sensor surfaces, biochips, and microstructured analysis systems, to mass transport through synthetic membranes, skin and tissue, as well as intercellular communication processes. Moreover, processes can be studied that occur at liquid surfaces and liquid-liquid interfaces.  相似文献   

17.
《Comptes Rendus Chimie》2018,21(12):1287-1299
Among switchable molecules, spin-crossover molecules are particularly appealing for molecular electronics as their change in spin state is associated with a large change in conductance and can also be used for molecular spintronic devices. In this article, we review the techniques that allow one to measure the electronic transport through single spin-crossover molecules. We particularly emphasize recent experiments using scanning tunneling microscopy and spectroscopy, where the spin state can be controlled by electric field, electric current or light.  相似文献   

18.
We use infrared near-field microscopy to chemically map the morphology of biological matrices. The investigated sample is built up from surface-tethered membrane proteins (cytochrome c oxidase) reconstituted in a lipid bilayer. We have carried out infrared near-field measurements in the frequency range between 1600 and 1800 cm(-1). By simultaneously recording the topography and chemical fingerprint of the protein-tethered lipid bilayer with a lateral resolution of 80 nm × 80 nm, we were able to probe locally the chemical signature of this membrane and to provide a local map of its surface morphology.  相似文献   

19.
Scanning electrochemical microscopy (SECM) was used to characterize enzyme-modified glass-gold specimens. The exposed gold surface was functionalized with an aminothiol and reacted with carbodiimide-activated glucose oxidase. The specimen surface was examined with SECM, using a 25 μm platinum electrode. Images were acquired showing the topography, electric conductivity, and enzymatic activity of the composite surface. It was found that the hydroxy-groups of the glass surface are as likely to bind to the activated enzyme as the amino-groups on the gold surface.  相似文献   

20.
Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350? 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist?; group 3, Listerine?; group 4, Colgate Plax?; LED LCU, group 5, saliva; group 6, Pepsi Twist?; group 7, Listerine?; group 8, Colgate Plax?. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist? groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号