首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
气相色谱/质谱法测定熏肉中的多环芳烃   总被引:22,自引:0,他引:22  
李永新  张宏  毛丽莎  孙成均 《色谱》2003,21(5):476-479
建立了熏肉中多环芳烃的气相色谱/质谱(GC/MS)测定方法。样品经正己烷-丙酮(体积比为1∶1)超声波提取、氧化铝柱净化后,用GC/MS分离测定。优化了25种多环芳烃(PAHs)化合物的分离测定条件。结果 25种PAHs回收率范围为48.5%-106.5%;日内(n=7)相对标准偏差为3.75%-7.95%。方法具有灵敏度高、准确度好、能同时分离测定20余种多环芳烃化合物的优点,适合于熏肉中多环芳烃化合物的分析测定。  相似文献   

2.
色谱/质谱联用技术分析测定贻贝中的多环芳烃   总被引:5,自引:0,他引:5  
马永安  刘彤 《分析化学》1997,25(12):1382-1385
介绍了GC-MS联用技术-物质征离子选择法测定贻贝中多环芳烃的分析方法,并就定性定量离子的选择,以及方法的准确度和精密度进行了探讨。结果表明,本方法适用于海洋生物贻贝,牡蛎中PAHs的分析测定。  相似文献   

3.
GC/MS法研究焦炉烟气中多环芳烃类污染物   总被引:1,自引:0,他引:1  
焦炉烟气中的有机污染物种类繁多 ,但是对人类和生态环境有严重危害的主要是多环芳烃类化合物 [1~ 3] .由于该类化合物结构复杂 ,含量不等 ,因此 ,对其进行分析测试难度很大 .近年来 ,采用色谱 /质谱 (GC/ MS)联机、色谱 /红外 (GC/IR)联机、液相色谱 /质谱联机 (LC/ MS)以及超临界色谱 /质谱联机 (SFC/ MS)等新技术 ,对环境中的多环芳烃类化合物取得了高灵敏度和高选择性的定量分析结果 ,并获得了许多结构信息 .但在我国 ,只对个别地区进行了研究 [4~ 6] ,目前还难以普遍实现 .本文利用气相色谱 /质谱联用法 ,对鞍山钢铁公司炼焦…  相似文献   

4.
参照美国EPA525.1方法,C18-固相萃取膜萃取饮用水中的有机物,利用GC/MS法鉴定多环芳烃(PAHs),使用16种多环芳烃混合标准样绘制标准曲线,以内标法对PAHs进行定量分析.采用本方法研究某水厂经过深度处理后的出厂水中的7种多环芳烃的含量,PAHs的平均回收率为94.0%~97.7%.检测限为0.001μg/L.  相似文献   

5.
提出了全二维气相色谱-氢火焰离子化检测器(GC×GC-FID)定性定量分析柴油中多环芳烃的方法。利用全二维气相色谱-飞行时间质谱法(GC×GC-TOF MS)确定柴油芳烃的4个族组成,分别为非芳烃、一环芳烃、二环芳烃和三环+芳烃,获得37种定性化合物;采用峰面积归一化法对多环芳烃进行定量。结果表明:柴油质控样中多环芳烃测定值的相对误差绝对值不大于5.0%;对柴油样品进行回收试验,回收率为95.7%~104%,测定值的相对标准偏差(n=6)为1.7%~4.3%。方法用于7种实际柴油样品分析,并与NB/SH/T 0806-2022进行比对,结果显示两种方法测定值的相对误差绝对值均不大于5.0%。  相似文献   

6.
气质联用仪法测定奶粉中多环芳烃   总被引:4,自引:0,他引:4  
研究了奶粉中多环芳烃的气相色谱/质谱(GC/MS)测定方法. 样品经甲醇-KOH皂化后用甲苯提取, 提取液经微孔滤膜过滤后用气相色谱质谱仪测定其含量, 外标法定量. 结果16种PAHs的回收率范围为92.0%~106%;RSD为2.2%~4.7%. 方法能同时分离16种PAHs, 适合于奶粉中多环芳烃的分析测定.  相似文献   

7.
研究了贻贝中多环芳烃标准物质的制备方法,对制得的标准物质进行了均匀性、稳定性检验,统计计算检验结果并确定了定值数据。研制的贻贝中多环芳烃标准物质均匀性良好,在一年保存期内稳定,可用于海洋环境监测中。  相似文献   

8.
采用聚丙烯酸树脂涂层-固相微萃取-气相色谱-质谱(PA—SPME—GC—MS)联用技术,在优化的萃取条件下检测了城市污水中的苯系物和多环芳烃等芳香烃化合物.该方法的最低检出限达12ng/L水平,相对标准偏差为1.7%~9.8%.  相似文献   

9.
李海静  张香文 《色谱》2017,35(8):867-874
采用全二维气相色谱-质谱联用仪(GC×GC-MS),通过优化程序升温和调制周期,建立了喷气燃料裂解产物中芳烃的定性定量分析方法。该方法对多环芳烃(PAH)同分异构体具有良好的分离能力。利用MS检测器谱库检索结果、芳烃标准品及相关的文献报道,对喷气燃料裂解产物中常见的单环芳烃、二环芳烃、三环芳烃及四环芳烃等共27种芳烃进行了准确定性,并利用外标GC×GC-FID法对其进行定量。定量结果表明,芳烃含量均随着裂解产气率的增加而增大,当裂解产气率达到22%时,二环芳烃开始产生,且其含量随着裂解产气率的增加呈指数形式增加。该方法与传统的气相色谱-质谱相比,具有更好的分离及定性能力,可应用于复杂样品的分离及其定性定量分析。  相似文献   

10.
C18固相萃取膜适宜处理大体积地下水样现场采样而且易于运输、贮存。利用C18固相膜萃取以及GC/MS联用的方法对地下水中痕量半挥发性有机污染物进行了萃取以及定性、定量分析。优化了固相膜萃取的地下水采样量和浓缩体积。有机氯农药和多环芳烃的平均回收率分别为85%~110.1%、90.3%~115.1%;方法检出限达到10^-9g/L;相对标准偏差均小于15%。本方法用于北京地区地下水中的有机污染物分析,并给出地下水样C18固相膜萃取的GC/MS测定结果。  相似文献   

11.
Counter‐current chromatography (CCC) was investigated as a new sample pretreatment method for the determination of trace polycyclic aromatic hydrocarbons (PAHs) in water environmental samples. The experiment was performed with a non‐aqueous binary two‐phase solvent system composed of n‐heptane and acetonitrile. The CCC column was first filled with the upper stationary phase, and then a large volume of water sample was pumped into the column while the CCC column was rotated at 1600 rpm. Finally, the trace amounts of PAHs extracted and enriched in the stationary phase were eluted out by the lower mobile phase and determined by gas chromatography–flame ionization detector (GC‐FID) or gas chromatography–mass spectrometry (GC‐MS). The enrichment and cleanup of PAHs can be fulfilled online by this method with high recoveries (84.1–103.2%) and good reproducibility (RSDs: 4.9–12.2%) for 16 EPA PAHs under the optimized CCC pretreatment conditions. This method has been successfully applied to determine PAHs in lake water where 8 PAHs were detected in the concentration of 40.9–89.9 ng/L. The present method is extremely suitable for the preparation of large volume of environmental water sample for the determination of trace amounts of organic pollutants including PAHs as studied in this paper.  相似文献   

12.
Microprobe two-step laser desorption/laser ionization mass spectrometry (μL2MS) and gas chromatography/mass spectrometry (GC/MS) were used to analyze polycyclic aromatic hydrocarbons (PAHs) in ancient terrestrial rocks. μL2MS provides an in situ analysis of very small samples, records the PAHs with no isomer information, and gives quantitative data on the degree of alkylation of a given PAH series over the complete mass range. GC/MS provides isomer separation and quantitation of PAHs in bitumen but not kerogen, and is limited by sample size. Combination of these techniques allows analysis of very small samples by μL2MS with GC/MS confirmation of isomer distributions of the solvent extractable components (bitumen). It was found that the concentration of bitumen within the rock samples affects the PAH alkylation signal for μL2MS. At low bitumen concentrations μL2MS can produce pyrolysis products from kerogen that is present; however, as bitumen concentrations increase, the PAH distribution from bitumen dominates the signal.  相似文献   

13.
Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.  相似文献   

14.
The potential of gas chromatography coupled to tandem mass spectrometry (GC/MS/MS) with a triple quadrupole analyzer (QqQ) has been investigated for the quantification and reliable identification of sixteen polycyclic aromatic hydrocarbons (PAHs) from the EPA priority list in animal and vegetable samples from aquaculture activities, whose fat content ranged from 5 to 100%. Matrices analyzed included fish fillet, fish feed, fish oil and linseed oil. Combining optimized saponification and solid‐phase extraction led to high efficiency in the elimination of interfering compounds, mainly fat, from the extracts. The developed procedure minimized the presence of these interfering compounds in the extracts and provided satisfactory recoveries of PAHs. The excellent sensitivity and selectivity of GC/(QqQ)MS/MS in selected reaction monitoring (SRM) allowed to reach limits of detection at pg/g levels. Two SRM transitions were acquired for each analyte to ensure reliable identification of compounds detected in samples. Confirmation of positive findings was performed by GC coupled to high‐resolution time‐of‐flight mass spectrometry (GC/TOFMS). The accurate mass information provided by GC/TOFMS in full acquisition mode together with its high mass resolution makes it a powerful analytical tool for the unequivocal confirmation of PAHs in the matrices tested. The method developed was applied to the analysis of real‐world samples of each matrix studied with the result of detecting and confirming the majority of analytes at the µg/kg level by both QqQ and TOF mass spectrometers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
多环芳烃指纹用于渤海采油平台原油的鉴别   总被引:5,自引:0,他引:5  
采用气相色谱/质谱方法,对渤海海上4个不同区块、5个平台的6口油井原油进行了烷基化多环芳烃系列化合物和美国环保署(EPA)优先控制多环芳烃系列化合物的准确定性定量分析。通过多环芳烃原始指纹谱图、多环芳烃组分分布模式和特征比值的比较对上述原油进行鉴别。结果证明不同区块的原油中多环芳烃指纹信息不尽相同,即使在同一平台不同油井中所产的原油其指纹也存在一定差异。为确保原油鉴别的准确性,分析过程中必须在仪器的稳定性和样品前处理方面实施严格的质量控制措施。  相似文献   

16.
Summary Analytical protocols have been adapted for the study of hydrocarbons at the trace level in the environment. Various samples, including sediments and biota, were collected from the Kuwaiti environment, treated according to the protocol and analyzed by chromatographic and spectroscopic methods. The methods used were synchronous scanning fluorescence spectroscopy (SSFS); high-performance liquid chromatography (HPLC) on C18 reversed-phase and NH2 normal-phase columns with UV and fluorescence detectors; gas chromatography on fused-silica capillary columns (GC) with flame ionization detector (FID), mass spectrometer (MS) and flame photometric detector (FPD); and high-resolution molecular spectrofluorimetry in Shpol'skii matrix at 10 K (HRSS). The different methods were found to give complementary information. SSFS was useful for fast evaluation and preliminary assessment of oil pollution during extended programs; it permitted sample selection for deeper analyses but, when applied to biota, needed special care in the clean-up procedure. GC/FID, was used to analyze saturated and ethylenic compounds and was useful for obtaining information on the origin of hydrocarbons but inconvenient for analyzing the aromatic fraction. GC/FPD was difficult to use with sediment samples and yielded little information on biota samples, although it did permit confirmation of high oil contamination in some examples. HPLC on a normal-phase column with UV and fluorescence detectors was useful for the fractionation of samples and for the separation of different families of aromatic compounds according to aromatic carbon number. GC/MS was used to quantify polycyclic aromatic hydrocarbons (PAHs) of less than four cycles but was not sensitive enough for PAHs of higher molecular weight. HRSS, however, was useful for the quantification of heavy PAHs and was also faster, could be automated, and gave accurate results. However, in an oil-pollution study, it must be backed up by the other techniques. In fact, no single analytical technique was found to be sufficient, and only judicious combinations of the tested techniques yielded adequate information on the origin of hydrocarbons in the environment.  相似文献   

17.
Polycyclic aromatic hydrocarbons (PAHs) are frequently measured in the atmosphere for air quality assessment, in biological tissues for health-effects monitoring, in sediments and mollusks for environmental monitoring, and in foodstuffs for safety reasons. In contemporary analysis of these complex matrices, gas chromatography (GC), rather than liquid chromatography (LC), is often the preferred approach for separation, identification, and quantification of PAHs, largely because GC generally affords greater selectivity, resolution, and sensitivity than LC. This article reviews modern-day GC and state-of-the-art GC techniques used for the determination of PAHs in environmental samples. Standard test methods are discussed. GC separations of PAHs on a variety of capillary columns are examined, and the properties and uses of selected mass spectrometric (MS) techniques are presented. PAH literature on GC with MS techniques, including chemical ionization, ion-trap MS, time-of-flight MS (TOF-MS), and isotope-ratio mass spectrometry (IRMS), is reviewed. Enhancements to GC, for example large-volume injection, thermal desorption, fast GC, and coupling of GC to LC, are also discussed with regard to the determination of PAHs in an effort to demonstrate the vigor and robustness GC continues to achieve in the analytical sciences.  相似文献   

18.
The most commonly used military fog oil is characterized by comprehensive two-dimensional gas chromatography (GC×GC) coupled to either Flame Ionization Detection (FID) or Time-of-Flight Mass Spectrometric Detection (TOFMS) to advance the knowledge regarding the complete chemical makeup of this complex matrix. Two different GC×GC column sets were investigated, one employing a non-polar column combined with a shape selective column and the other an inverse column set (medium-polar/non-polar). The inverse set maximizes the use of the two-dimensional separation space and segregates aliphatic from aromatic fractions. The shape selective column best separates individual polycyclic aromatic hydrocarbons (PAHs) from the bulk oil. The results reveal that fog oil (FO) is composed mainly of aliphatic compounds ranging from C10 to C30, where naphthenes comprise the major fraction. Although many different species of aromatics are present, they constitute only a minor fraction in this oil, and no conjugated PAHs are found. The composition of chemically similar aliphatic constituents limits the analytical power of silica gel fractionation and GC–MS analysis to characterize FO. Among the aliphatic compounds identified are alkanes, cyclohexanes, hexahydroindanes, decalins, adamantanes, and bicyclohexane. The aromatic fraction is composed of alkylbenzene compounds, indanes, tetrahydronaphthalenes, partially hydrogenated PAHs, biphenyls, dibenzofurans and dibenzothiophenes. This work represents the best characterization of military fog oil to date. As the characterization process shows, information on such complex samples can only be parsed using a combination of sample preprocessing steps, multiple detection schemes, and an intelligent selection of column chemistries.  相似文献   

19.
土壤中64种痕量半挥发性有机污染物的分析方法研究   总被引:1,自引:0,他引:1  
利用超声提取技术将土壤中的半挥发性有机污染物(SVOC)提取出来, 经旋转蒸发浓缩至一定体积后, 用ODSC18柱净化, 再用氮吹浓缩后, 取1.0 μL注入气相色谱中, 用DB-5 ms柱分离, 用气相色谱质谱仪(GC-MS)进行定性定量分析. 本方法研究土壤中64种半挥发性有机污染物, 其中包括苯系物、苯酚类、苯胺类、硝基芳香烃类、氯代芳烃类、多环芳烃类和酞酸酯类等物质的提取、净化方法以及回收率、精密度和检测限的测定. 该方法回收率为52.5%~105%.  相似文献   

20.
Summary Precipitation samples collected in Hannover (Germany) mainly in 1989 (and in part also in 1988 and 1990) were analyzed for n-alkanes, fatty acids, aldehydes, phenols and polycyclic aromatic hydrocarbons. The analytical methods employed were: GC/FID for alkanes, GC/MS for fatty acids and phenols, HPLC for aldehydes and PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号