首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
刘惠祥  何国毅  王琦 《力学学报》2019,51(1):94-102
蜻蜓是自然界优秀的飞行家,滑翔是其常见且有效的飞行模式.蜻蜓优异的飞行能力来源于其翅膀的巧妙结构,褶皱是蜻蜓翅膀上最为显著的结构之一,不仅提高了翅膀的刚度,还改变了其气动特性,而飞行过程中柔性翅膀会产生变形是蜻蜓翅膀的另一特性.为揭示蜻蜓在滑翔时,柔性褶皱前翅的变形,探究褶皱和柔性的共同作用对其气动特性的影响,基于逆向工程,依据前人的测量数据和研究成果,通过三维建模软件建立了蜻蜓三维褶皱前翅的计算流体力学(computational fluiddynamics,CFD)模型和计算结构力学(computational structuralmechanics,CSD)模型,并通过模态分析验证了此模型有足够的精度.基于CFD方法和CFD/CSD双向流固耦合计算方法分别对蜻蜓滑翔飞行时刚性和柔性褶皱前翅的气动特性进行了数值模拟,结果表明,柔性褶皱前翅受气动载荷后,翅脉和翅膜产生形变,柔性前翅上下表面压力差相较于刚性前翅减小了,从而其升力和阻力也减小了,而在大攻角时,变形后的前缘脉诱导出比刚性前翅更强的前缘涡.因此在攻角小于10$^\circ$时刚性前翅的气动特性优于柔性前翅,继续增大攻角,柔性前翅的气动特性则优于刚性前翅.前翅受载后气动响应时间短,翅尖的变形最大,仅仅产生了垂直于翅膀所在平面方向上的变形,而没有发生扭转,翼根处受到应力最大,褶皱上凸部分承受蜻蜓滑翔时前翅的主要载荷.   相似文献   

3.
4.
在昆虫飞行的实验研究中,可采用活体实验、模型实验和活体模型结合三种方法。活体实验可以客观反映自然界中昆虫的飞行规律,获得真实的实验数据,但可重复性差。模型实验作为机械装置可以重复进行试验,详细描述流场结构并定量各种参数大小,但与真实飞行存在一定差距。单独使用这两种中的任一方法均可对一些现象给出了解释。二者相结合的方法更易于准确描述昆虫的运动特征,通过对比模型与活体的结果来提出机理,尽管需要的实验周期较长,但结论往往更接近真实状态,基于该方法科学家们已提出了几种飞行机理。本文结合近几年文献报道,综述了昆虫飞行参数测量方法,并对以上几种方法在研究昆虫飞行机理中的作用进行了对比分析,认为模型和活体结合的研究方法更容易为一些飞行现象提出合理解释。  相似文献   

5.
A growing body of evidence indicates that a majority of insects experience some degree of wing deformation during flight. With no musculature distal to the wing base, the instantaneous shape of an insect wing is dictated by the interaction of aerodynamic forces with the inertial and elastic forces that arise from periodic accelerations of the wing. Passive wing deformation is an unavoidable feature of flapping flight for many insects due to the inertial loads that accompany rapid stroke reversals—loads that well exceed the mean aerodynamic force. Although wing compliance has been implicated in a few lift-enhancing mechanisms (e.g., favorable camber), the direct aerodynamic consequences of wing deformation remain generally unresolved. In this paper, we present new experimental data on how wing compliance may affect the overall induced flow in the hawkmoth, Manduca sexta. Real moth wings were subjected to robotic actuation in their dominant plane of rotation at a natural wing beat frequency of 25 Hz. We used digital particle image velocimetry at exceptionally high temporal resolution (2,100 fps) to assess the influence of wing compliance on the mean advective flows, relying on a natural variation in wing stiffness to alter the amount of emergent deformation (freshly extracted wings are flexible and exhibit greater compliance than those that are desiccated). We find that flexible wings yield mean advective flows with substantially greater magnitudes and orientations more beneficial to lift than those of stiff wings. Our results confirm that wing compliance plays a critical role in the production of flight forces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment. They generate and control aerodynamic forces by flapping their flexible wings. While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight, they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing. In order to test the hypothesis, the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility. The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology, the kinematics, the structural dynamics, the aerodynamics and the fluid–structure interactions of a hovering hawkmoth. The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings. It is found that the aerodynamic forces on the flapping wings are affected by the gust, because of the increase or decrease in relative wingtip velocity or kinematic angle of attack. The passive shape change of flexible wings can, however, reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions, except for the downward gust. Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback, which works passively with minimal delay, and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.  相似文献   

7.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
孙茂 《力学进展》2015,45(1):201501
昆虫是最早出现、数量最多和体积最小的飞行者. 它们能悬停、跃升、急停、快速加速和转弯, 飞行技巧十分高超. 由于尺寸小, 因而翅膀的相对速度很小, 从而进行上述飞行所需的升力系数很大. 但昆虫翅膀的雷诺数又很低. 它们是如何在低雷诺数下产生高升力的, 是流体力学和生物学工作者都十分关心的问题. 近年来这一领域有了许多研究进展. 该文对这些进展进行综述, 并对今后工作提一些建议. 因2005 年前的工作已在几篇综述文章有了详细介绍, 该文主要介绍2005 年以来的工作. 首先简述昆虫翅的拍动运动及昆虫绕流的基本方程和相似参数; 然后对2005 年之前的工作做一简要回顾. 之后介绍2005 年后的进展, 依次为: 运动学观测; 前缘涡; 翅膀柔性变形及皱褶的影响; 拍动翅的尾涡结构; 翼/身、左右翅气动干扰及地面效应; 微小昆虫; 蝴蝶与蜻蜓; 机动飞行. 最后为对今后工作的建议.   相似文献   

9.
《力学快报》2020,10(6):382-389
The sophisticated structures of flapping insect wings make it challenging to study the role of wing flexibility in insect flight. In this study, a mass-spring system is used to model wing structural dynamics as a thin, flexible membrane supported by a network of veins. The vein mechanical properties can be estimated based on their diameters and the Young's modulus of cuticle. In order to analyze the effect of wing flexibility, the Young's modulus is varied to make a comparison between two different wing models that we refer to as flexible and highly flexible. The wing models are coupled with a pseudo-spectral code solving the incompressible Navier–Stokes equations, allowing us to investigate the influence of wing deformation on the aerodynamic efficiency of a tethered flapping bumblebee. Compared to the bumblebee model with rigid wings, the one with flexible wings flies more efficiently, characterized by a larger lift-to-power ratio.  相似文献   

10.
The problem of the aerodynamic shape optimization to minimum drag, subject to geometrical and aerodynamic constraints, is considered. An accurate and computationally efficient approach to the multiobjective constrained design of 3D aerodynamic wings is proposed. The optimization is driven by full Navier-Stokes computations and Genetic Algorithms (GAs). The verification results include a variety of optimization cases for a classical test-case of ONERA M6 wing in transonic flight conditions. The method allows to significantly reduce the total drag of optimized wings, while exhibiting high robustness and keeping CFD computational volume to an acceptable level.  相似文献   

11.
本文提出一种确定跨音速后掠翼抖振边界的数值计算方法,现有的确定跨音速翼型抖振边界的F.Thomas 准则被推广到包括具有大后掠角的后掠翼,计算是对侧滑翼进行,其中用积分法对三维可压缩湍流边界层的计算是根据本文作者听发展的方法,对于跨音速压强分布是利用A.Eberle的解全速位方程的有限元素法给出,按本文方法计算出F-86A 飞机的抖振边界与相同雷诺数下飞行试验所得结果符合得很好。  相似文献   

12.
In this paper, the behavior of two-dimensional symmetric flapping wings moving in a viscous fluid is investigated. Harmonic motion is applied to idealize flying organisms with flexible wings and extensive testing is carried out to investigate the resultant flight behavior related to the ability to take-off or accelerate the flapping wing system away from a starting location. Special attention is paid to analyze the effect of the main mechanical parameters, as well as the effect of lateral wind on flight performances. Moreover, aiming to investigate the possible benefits of flying in flocks, a couple of synchronously flapping wings is considered in addition to the single arrangement. The numerical simulations are performed by solving the fluid–structure interaction problem through a strongly coupled partitioned approach. Fluid dynamics are modeled at the mesoscopic scale by the lattice Boltzmann method. The resulting macroscopic quantities are derived, as usual, based on the statistical molecular-level interpretation.Wings are modeled by geometrically nonlinear, elastic beam finite elements and structure dynamics is solved by the time discontinuous Galerkin method. Fluid–structure interface conditions are handled using the immersed boundary method. The resultant numerical approach combines simplicity and high computational efficiency. A Monte Carlo simulation strategy is employed to characterize the flight behavior subjected to lateral wind. Various scenarios are discussed.  相似文献   

13.
The control of flight forces and moments by flapping wings of a model bumblebee is studied using the method of computational fluid dynamics.Hovering flight is taken as the reference flight:Wing kinematic parameters are varied with respect to their values at hovering flight.Moments about(and forces along)x,y,z axes that pass the center of mass are computed.Changing stroke amplitude(or wingbeat frequency)mainly produces a vertical force.Changing mean stroke angle mainly produces a pitch moment.Changing wing angle of attack,when down-and upstrokes have equal change,mainly produces a vertical force,while when down-and upstrokes have opposite changes,mainly produces a horizontal force and a pitch moment.Changing wing rotation timing,when dorsal and ventral rotations have the same timing,mainly produces a vertical force,while when dorsal and ventral rotations have opposite timings,mainly produces a pitch moment and a horizontal force.Changing rotation duration has very small effect on forces and moments.Anti-symmetrically changing stroke amplitude(or wingbeat frequency)of the contralateral wings mainly produces a roll moment.Anti-symmetrically changing angles of attack of the contralateral wings,when down-and upstrokes have equal change,mainly produces a roll moment,while when down-and upstrokes have opposite changes,mainly produces a yaw moment.Anti-symmetrically changing wing rotation timing of the contralateral wings,when dorsal and ventral rotations have the same timing,mainly produces a roll moment and a side force,while when dorsal and ventral rotations have opposite timings,mainly produces a yaw moment.Vertical force and moments about the three axes can be separately controlled by separate kinematic variables.A very fast rotation can be achieved with moderate changes in wing kinematics.  相似文献   

14.
Structural Analysis of a Dragonfly Wing   总被引:2,自引:0,他引:2  
Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans contain the complete venation pattern including thickness variations throughout both wings. We subsequently approximated the forewing architecture with an efficient three-dimensional beam and shell model. We then determined the wing’s natural vibration modes and the wing deformation resulting from analytical estimates of 8 load cases containing aerodynamic and inertial loads (using the finite element solver Abaqus). Based on our computations we find that the inertial loads are 1.5 to 3 times higher than aerodynamic pressure loads. We further find that wing deformation is smaller during the downstroke than during the upstroke, due to structural asymmetry. The natural vibration mode analysis revealed that the structural natural frequency of a dragonfly wing in vacuum is 154 Hz, which is approximately 4.8 times higher than the natural flapping frequency of dragonflies in hovering flight (32.3 Hz). This insight in the structural properties of dragonfly wings could inspire the design of more effective wings for insect-sized flapping micro air vehicles: The passive shape of aeroelastically tailored wings inspired by dragonflies can in principle be designed more precisely compared to sail like wings —which can make the dragonfly-like wings more aerodynamically effective.  相似文献   

15.
We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.  相似文献   

16.
Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stability (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization control of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds considered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizontal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.  相似文献   

17.
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body–fin interac-tion, C-start and maneuvering, swimming in turbulence,collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.  相似文献   

18.
Flexible insect wings deform passively under the periodic loading during napping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite element analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.  相似文献   

19.
It has been known for a century that quasi-steady attached flows are insufficient to explain aerodynamic force production in bumblebees and many other insects. Most recent studies of the unsteady, separated-flow aerodynamics of insect flight have used physical, analytical or numerical modeling based upon simplified kinematic data treating the wing as a flat plate. However, despite the importance of validating such models against living subjects, few good data are available on what real insects actually do aerodynamically in free flight. Here we apply classical smoke line visualization techniques to analyze the aerodynamic mechanisms of free-flying bumblebees hovering, maneuvering and flying slowly along a windtunnel (advance ratio: −0.2 to 0.2). We find that bumblebees, in common with most other insects, exploit a leading-edge vortex. However, in contrast to most other insects studied to date, bumblebees shed both tip and root vortices, with no evidence for any flow structures linking left and right wings or their near-wakes. These flow topologies will be less efficient than those in which left and right wings are aerodynamically linked and shed only tip vortices. While these topologies might simply result from biological constraint, it is also possible that they might have been specifically evolved to enhance control by allowing left and right wings to operate substantially independently. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Effects of unsteady deformation of a flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid.Aerodynamic forces on the flapping wing are not much affected by considerable twist,but affected by camber deformation.The effect of combined camber and twist deformation is similar to that of camber deformation.With a deformation of 6% camber and 20°twist(typical values observed for wings of many insects),lift is increased bv 10%~20%and lift-to-drag ratio by around 10%compared with the case of a rigid flat-plate wing.As a result.the deformation can increase the maximum lift coefficient of an insect.and reduce its power requirement for flight.For example,for a hovering bumblebee with dynamically deforming wings(6?mber and 20°twist),aerodynamic power required is reduced by about 16%compared with the case of rigid wings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号