首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionsp(x) andq(x) for which the Dirac operator $$Dy = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ \end{array} } & {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ \end{array} } \right)\frac{{dy}}{{dx}} + \left( {\begin{array}{*{20}c} {p(x) q(x)} \\ {q(x) - p(x)} \\ \end{array} } \right)y = \lambda y, y = \left( {\begin{array}{*{20}c} {y_1 } \\ {y_2 } \\ \end{array} } \right), y_1 (0) = 0,$$ has a countable number of eigenvalues in the continuous spectrum are constructed.  相似文献   

2.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

3.
The solution of the problem of finding the quantity 1 $$|\vartriangle \mathop n\nolimits_{v_k }^{\sup } | \leqslant 1 1\begin{array}{*{20}c} {1nf} \\ {(k) = 1/_k } \\ {(k = 0, \pm 1. \pm 2, ...)} \\ \end{array} || /^{(n)} (x)||_C ( - \infty ,\infty )'$$ obtained by Subbotin, is extended to the case of formally self-adjoint differential operators with constant coefficients and corresponding generalized differences.  相似文献   

4.
Изучаются ряды Риман а, рассматривавшиеся ранее в работах [1] и [2]. Пустьa n (n=1, 2,…) — последов ательность комплекс ных чисел иr n =a n +a 2n +. Предполо жим, чтоΣ¦a n ¦<∞. Тогда выпо лняются неравенства $$\begin{array}{*{20}c} {\sum\limits_n {\left| {r_n } \right| \leqq } \sum\limits_n {\left| {a_n } \right|} d(n),} & {\sum\limits_n {\left| {a_n } \right|} } \\ \end{array} \leqq \sum\limits_n {\left| {r_n } \right|2^{\omega (n)} ,} $$ гдеd(n) иω(n) — соответств енно число делителей и число простых делителейn. Е сли $$\begin{array}{*{20}c} {F(z) = \sum\limits_n {a_n z^n ,} } & {p_n (z) = \sum\limits_{s|n} {\mu \left( {\frac{n}{s}} \right)z^s ,} } \\ \end{array} $$ то \(F(z) = \sum\limits_n {r_n p_n (z)} \) для ¦z¦<1. В статье с одержатся некоторые результаты о сходимо сти рядов РиманаΣt n p n (z) на окружно сти ¦z¦=1. Например, если числаt n неотрицатель ны, монотонно убывают и \(\sum\limits_n {t_n< \infty } \) , то ряд равн омерно сходится для ¦z¦=1. Сформулированы неко торые новые задачи.  相似文献   

5.
We investigate here a new numerical method, base on the Laguerre inequalities, for determining lower bounds for the de Bruijn-Newman constant ∧, which is related to the Riemann Hypothesis. (Specifically, the truth of the Riemann Hypothesis would imply that ∧≦0.) Unlike previous methods which involved either finding nonreal zeros of associated Jensen polynomials or finding nonreal zeros of a certain real entire function, this new method depends only on evaluating, in real arithmetic, the Laguerre difference $$L_1 (H_\lambda (x))\begin{array}{*{20}c} {\text{.}} \\ {\text{.}} \\ \end{array} = (H'_\lambda (x))^2 - H_\lambda (x) \cdot H''_{_\lambda } (x){\text{ (}}x,{\text{ }}\lambda \in \mathbb{R}{\text{)}}$$ where \((H_\lambda (z)\begin{array}{*{20}c} {\text{.}} \\ {\text{.}} \\ \end{array} = \int_0^\infty {e^{\lambda t^2 } \Phi (t)}\) cos(tz)dt is a real entire function. We apply this method to obtain the new lower bound for ∧, -0.0991 < ∧ which improves all previously published lower bounds for ∧.  相似文献   

6.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

7.
LetY be a fence of sizem andr=?m?1/2?. The numberb(m) of order-preserving selfmappings ofY is equal toA r-Br-Cr-Dr, where, ifm is odd, $$\begin{gathered} A_r = 2(r + 1)\sum\limits_{s = 0}^r {\left( {\begin{array}{*{20}c} {r + s} \\ {2s} \\ \end{array} } \right)} 4^s , B_r = 2r\sum\limits_{s = 1}^r {\left( {\begin{array}{*{20}c} {r + s} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ {s - 1} \\ \end{array} } \right),} \hfill \\ C_r = 4r\sum\limits_{s = 0}^{r - 1} {\left( {\begin{array}{*{20}c} {r + s} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ s \\ \end{array} } \right), D_r = \sum\limits_{s = 0}^{r - 1} {(2s + 1)} \left( {\begin{array}{*{20}c} {r + s - 1} \\ s \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {r - 1} \\ s \\ \end{array} } \right)} \hfill \\ \end{gathered} $$ . Ifm is even, a similar formula forb(m) is true. The key trick in the proof is a one-to-one correspondence between order-preserving selfmappings ofY and pairs consisted of a partition ofY and a strictly increasing mapping of a subfence ofY toY.  相似文献   

8.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

9.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

10.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

11.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

12.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

13.
It is proved that the operator $$P \equiv - \frac{{\partial ^2 }}{{\partial x_1^2 }} - \sum\nolimits_{k = 2}^n {\frac{\partial }{{\partial x_k }}\varphi ^2 (x)} \frac{\partial }{{\partial x_k }},$$ where ? ε C(Ω) (Ω is a domain in Rn), {x: ?(x) = 0} is a compactun in Ω which is the closure of its internal points, has the property of global hypoellipticity in Ω, i.e., $$\begin{array}{*{20}c} {v \in D'(\Omega ),} & {Pv \in C^\infty } & {(\Omega ) \Rightarrow \upsilon \in C^\infty (\Omega ).} \\ \end{array} $$ . This operator is not hypoelliptic.  相似文献   

14.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

15.
We present series representations for some mathematical constants, like γ, π, log 2, ζ(3). In particular, we prove that the following representation for Euler’s constant is valid: $$ \gamma = \sum\limits_{r = 1}^\infty {\sum\limits_{s = 1}^r {\left( {\begin{array}{*{20}c} {r - 1} \\ {s - 1} \\ \end{array} } \right)( - 1)^{r - s} 2^s \left( {\frac{1} {s} + \log \frac{s} {{s + 1}}} \right)} } . $$   相似文献   

16.
We consider minimum-error evaluation of integrals of rapidly oscillating functions of the form $$I(\omega ) = \int\limits_a^b {f(x)\left\{ {\begin{array}{*{20}c} {\sin \omega x} \\ {\cos \omega x} \\ \end{array} } \right\}dx}$$ where f(x) is in the class of interpolation Lipschitzian functions and the information given about f(x) is approximate. The boundary function method is applied to derive lower bounds on the numerical integration error of l(ω) in this class and quadrature formulas attaining these bounds are constructed.  相似文献   

17.
We consider the second-order matrix differential operator $$N = \left( {\begin{array}{*{20}c} { - \frac{d}{{dx}}\left( {p_0 \frac{d}{{dx}}} \right) + p_1 } \\ r \\ \end{array} \begin{array}{*{20}c} r \\ { - \frac{d}{{dx}}\left( {q_0 \frac{d}{{dx}}} \right) + q_1 } \\ \end{array} } \right)$$ determined by the expression Nφ, [0 ?x < ∞), where \(\phi = \left( {\begin{array}{*{20}c} U \\ V \\ \end{array} } \right)\) . It has been proved that if p0, q0, p1, q1,r satisfy certain conditions, then N is in the limit point case at ∞. It has been also shown that certain differential operators in the Hilbert space L2 of vectors, generated by the operator N, are symmetric and self-adjoint.  相似文献   

18.
Algebraic immunity has been considered as one of cryptographically significant properties for Boolean functions. In this paper, we study ∑d-1 i=0 (ni)-weight Boolean functions with algebraic immunity achiev-ing the minimum of d and n - d + 1, which is highest for the functions. We present a simpler sufficient and necessary condition for these functions to achieve highest algebraic immunity. In addition, we prove that their algebraic degrees are not less than the maximum of d and n - d + 1, and for d = n1 +2 their nonlinearities equalthe minimum of ∑d-1 i=0 (ni) and ∑ d-1 i=0 (ni). Lastly, we identify two classes of such functions, one having algebraic degree of n or n-1.  相似文献   

19.
We study the existence of forced vibrations of nonlinear wave equation: (*) $$\begin{array}{*{20}c} {u_{tt} - u_{xx} + g(u) = f(x,t),} & {(x,t) \in (0,\pi ) \times R,} \\ {\begin{array}{*{20}c} {u(0,t) = u(\pi ,t) = 0,} \\ {u(x,t + 2\pi ) = u(x,t),} \\ \end{array} } & {\begin{array}{*{20}c} {t \in R,} \\ {(x,t) \in (0,\pi ) \times R,} \\ \end{array} } \\ \end{array}$$ whereg(ξ)∈C(R,R)is a function with superlinear growth and f(x, t) is a function which is 2π-periodic in t. Under the suitable growth condition on g(ξ), we prove the existence of infinitely many solution of (*) for any given f(x, t).  相似文献   

20.
An efficient way to evaluate \(\sum\limits_{j = k}^n {( - 1)^{j - k - 1} \left( {\begin{array}{*{20}c} n \\ j \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {j - 1} \\ {k - 1} \\ \end{array} } \right)} \ln j\) is described. This sum, connected with the logarithmic Weibull distribution, is hard to evaluate directly, because the binomial coefficients become quite large, and then the alternating signs cause severe loss of significant figures. By converting the sum to an integral, we avoid this difficulty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号