首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A constitutive model is derived for the isothermal nonlinear viscoelastic response in polymers, which do not possess the separability property. The model is based on the concept of transient networks, and treats a polymer as a system of nonlinear elastic springs (adaptive links), which break and emerge due to micro-Brownian motion of chains. The breakage and reformation rates for adaptive links are assumed to depend on some strain energy density. The viscoelastic behavior is described by an integral constitutive equation, where the relaxation functions satisfy partial differential equations with coefficients depending on the strain history. Adjustable parameters of the model are found by fitting experimental data for a number of polymers in tension at strains up to 400 per cent. To validate the constitutive relations, we consider loading with different strain rates, determine adjustable parameters at one rate of strains, and compare prediction of the model with observations at another rate of strains. Fair agreement between experimental data and results of numerical simulation is demonstrated when the rates of strains differ by more than a decade. Received 1 July 1997; accepted for publication 7 October 1997  相似文献   

2.
Creep and stress relaxation are known to be interrelated in linearly viscoelastic materials by an exact analytical expression. In this article, analytical interrelations are derived for nonlinearly viscoelastic materials which obey a single integral nonlinear superposition constitutive equation. The kernel is not assumed to be separable as a product of strain and time dependent parts. Superposition is fully taken into account within the single integral formulation used. Specific formulations based on power law time dependence and truncated expansions are developed. These are appropriate for weak stress and strain dependence. The interrelated constitutive formulation is applied to ligaments, in which stiffness increases with strain, stress relaxation proceeds faster than creep, and rate of creep is a function of stress and rate of relaxation is a function of strain. An interrelation was also constructed for a commercial die-cast aluminum alloy currently used in small engine applications.  相似文献   

3.
工程中大量材料的形变介于弹性与黏性之间, 既具有弹性固体特性, 又具有黏性流体特点, 即为黏弹性. 黏弹性使得材料出现很多力学松弛现象, 如应变松弛、滞后损耗等行为. 在研究受热载荷作用的多场耦合问题的瞬态响应时, 考虑此类问题中的热松弛和应变松弛现象, 对准确描述其瞬态响应尤为重要. 针对广义压电热弹问题的瞬态响应, 尽管已有学者建立了考虑热松弛的广义压电热弹模型, 但迄今, 尚未计入应变松弛. 本文中, 考虑到材料变形时的应变松弛, 通过引入应变率, 在Chandrasekharaiah广义压电热弹理论的基础之上, 经拓展, 建立了考虑应变率的广义压电热弹理论. 借助热力学定律, 给出了理论的建立过程并得到了相应的状态方程及控制方程. 在本构方程中, 引入了应变松弛时间与应变率的乘积项, 同时, 分别在本构方程和能量方程中引入了热松弛时间因子. 其后, 该理论被用于研究受移动热源作用的压电热弹一维问题的动态响应问题. 采用拉普拉斯变换及其数值反变换, 对问题进行了求解, 得到了不同应变松弛时间和热源移动速度下的瞬态响应, 即无量纲温度、位移、应力和电势的分布规律, 并重点考察了应变率对各物理量的影响效应, 将结果以图形形式进行了表示. 结果表明: 应变率对温度、位移、应力和电势的分布规律有显著影响.  相似文献   

4.
The one-dimensional constitutive equations of strain-hardening materials subject to nonlinear creep are derived. The solution is found using the hypothesis of unified deformation curve based on the similarity of the tensile and isochronic creep curves. A generalized rheological model is constructed which accounts for the instantaneous strain rate, loading rate, and the mode of strain hardening. This model is used to derive one-dimensional constitutive equations for linear viscoelastic, nonlinear viscoelastic, and linear- and nonlinear-hardening viscoelastoplastic materials. It is shown that the creep of linear viscoelastic and linear-hardening viscoelastoplastic materials is transient. For nonlinear viscoelastic and nonlinear-hardening viscoelastoplastic materials, all the characteristic stages of creep are present  相似文献   

5.
李吉伟  何天虎 《力学学报》2020,52(5):1267-1276
工程中大量材料的形变介于弹性与黏性之间, 既具有弹性固体特性, 又具有黏性流体特点, 即为黏弹性. 黏弹性使得材料出现很多力学松弛现象, 如应变松弛、滞后损耗等行为. 在研究受热载荷作用的多场耦合问题的瞬态响应时, 考虑此类问题中的热松弛和应变松弛现象, 对准确描述其瞬态响应尤为重要. 针对广义压电热弹问题的瞬态响应, 尽管已有学者建立了考虑热松弛的广义压电热弹模型, 但迄今, 尚未计入应变松弛. 本文中, 考虑到材料变形时的应变松弛, 通过引入应变率, 在Chandrasekharaiah广义压电热弹理论的基础之上, 经拓展, 建立了考虑应变率的广义压电热弹理论. 借助热力学定律, 给出了理论的建立过程并得到了相应的状态方程及控制方程. 在本构方程中, 引入了应变松弛时间与应变率的乘积项, 同时, 分别在本构方程和能量方程中引入了热松弛时间因子. 其后, 该理论被用于研究受移动热源作用的压电热弹一维问题的动态响应问题. 采用拉普拉斯变换及其数值反变换, 对问题进行了求解, 得到了不同应变松弛时间和热源移动速度下的瞬态响应, 即无量纲温度、位移、应力和电势的分布规律, 并重点考察了应变率对各物理量的影响效应, 将结果以图形形式进行了表示. 结果表明: 应变率对温度、位移、应力和电势的分布规律有显著影响.   相似文献   

6.
Continuous loading and unloading experiments are performed at different strain rates to characterize the large deformation behavior of polyurea under compressive loading. In addition, uniaxial compression tests are carried out with multistep strain history profiles. The analysis of the experimental data shows that the concept of equilibrium path may not be applied to polyurea. This finding implies that viscoelastic constitutive models of the Zener type are no suitable for the modeling of the rate dependent behavior of polyurea. A new constitutive model is developed based on a rheological model composed of two Maxwell elements. The soft rubbery response is represented by a Gent spring while nonlinear viscous evolution equations are proposed to describe the time-dependent material response. The eight material model parameters are identified for polyurea and used to predict the experimentally-measured stress-strain curves for various loading and unloading histories. The model provides a good prediction of the response under monotonic loading over wide range of strain rates, while it overestimates the stiffness during unloading. Furthermore, the model predictions of the material relaxation and viscous dissipation during a loading-unloading cycle agree well with the experiments.  相似文献   

7.
The theory of a Cosserat point has been used to formulate a new 3-D finite element for the numerical analysis of dynamic problems in nonlinear elasticity. The kinematics of this element are consistent with the standard tri-linear approximation in an eight node brick-element. Specifically, the Cosserat point is characterized by eight director vectors which are determined by balance laws and constitutive equations. For hyperelastic response, the constitutive equations for the director couples are determined by derivatives of a strain energy function. Restrictions are imposed on the strain energy function which ensure that the element satisfies a nonlinear version of the patch test. It is shown that the Cosserat balance laws are in one-to-one correspondence with those obtained using a Bubnov–Galerkin formulation. Nevertheless, there is an essential difference between the two approaches in the procedure for obtaining the strain energy function. Specifically, the Cosserat approach determines the constitutive coefficients for inhomogeneous deformations by comparison with exact solutions or experimental data. In contrast, the Bubnov–Galerkin approach determines these constitutive coefficients by integrating the 3-D strain energy function using the kinematic approximation. It is shown that the resulting Cosserat equations eliminate unphysical locking, and hourglassing in large compression without the need for using assumed enhanced strains or special weighting functions.  相似文献   

8.
Compared with the numerous works into the constitutive equations for the mechanical behaviour of metals, very little attention has been devoted to those of polymers. However, a model is required to describe both the complex shape of the stress–strain curves and strain rate sensitivity of glassy polymers. In this Note, a unified viscoelastic-viscoplastic model is presented in which the nonlinear pre-yield behaviour, the strain softening and the strain hardening are described by internal variables, in analogy with the models developed for metals. In order to check the predictive capability of the model, the numerical results are compared with the experimental data (monotone, creep and relaxation tests) of a typical amorphous glassy polymer. To cite this article: F. Zaïri et al., C. R. Mecanique 333 (2005).  相似文献   

9.
Relaxation experiments for metallic materials and solid polymers have exhibited nonlinear dependence of stress relaxation on prior loading rate; the relaxed stress associated with the fastest prior strain rate has the smallest magnitude at the end of the same relaxation periods. Modeling capability for the basic feature of relaxation behavior is qualitatively investigated in the context of unified state variable theory. Unified constitutive models are categorized into three general classes according to the rate dependence of kinematic hardening rule, which defines the evolution of the back (equilibrium) stress and is the major difference among constitutive models. The first class of models adopts the nonlinear kinematic hardening rule proposed by Armstrong and Frederick. In this class, the back stress appears to be rate-independent under loading and subsequent relaxation conditions. In the second class of models, a stress rate term is incorporated into the Armstrong–Frederick rule and the back stress then becomes rate-dependent during relaxation condition even though it remains rate-independent under loading condition. The final class proposed here includes a new nonlinear kinematic hardening rule that causes the back stress to be rate-dependent all the time. It is shown that the apparent rate dependence of the back stress during relaxation enables constitutive models to predict the influence of prior loading rate on relaxation behavior.  相似文献   

10.
Uniaxial torsion and biaxial torsion-tension experiments on thin-walled tubes were carried out to investigate the viscoplastic behavior of stainless steel XCrNi18.9. A series of monotonic tests under strain and stress control shows nonlinear rate dependence and suggests the existence of equilibrium states, which are asymptotically approached during relaxation and creep processes. Strain controlled cyclic experiments display various hardening and softening phenomena that depend on strain amplitude and mean strain. All experiments indicate that the equilibrium states within the material depend on the history of the input process, whereas the history-dependence of the relaxation and creep behavior appears less significant. From the experiments the design of a constitutive model of viscoplasticity is motivated: The basic assumption is a decomposition of the total stress into an equilibrium stress and a non-equilibrium overstress: At constant strain, the overstress relaxes to zero, where the relaxation time depends on the overstress in order to account for the nonlinear rate-dependence. The equilibrium stress is assumed to be a rate independent functional of the total strain history. Classical plasticity is utilized with a kinematic hardening rule of the Armstrong-Frederick type. In order to incorporate the amplitude-dependent hardening and softening behavior, a generalized arc length representation is applied [14]. The introduction of an additional kinematic hardening variable facilitates consideration of additional hardening effects resulting from the non-radiality of the input process. Apart from the common yield and loading criterion of classical plasticity, the proposed constitutive model does not contain any further distinction of different cases.The experimental data are sufficient to identify the material parameters of the constitutive model. The results of the identification procedure demonstrate the ability of the model to represent the observed phenomena with satisfactory approximation.  相似文献   

11.
12.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.   相似文献   

13.
为评价60Si2Mn螺旋压缩弹簧的室温松弛特性,利用InstronE3000K8953型小吨位电子动静态疲劳试验机,对其在不同温度和初始应力水平条件下进行了高温压缩加速应力松弛试验,研究了环境温度、初始应力水平对松弛行为的影响.基于粘弹性体模型,揭示了应力松弛过程中弹性应变向塑性应变的转化特性与塑性应变随松弛时间的变化规律.在对应力松弛前后弹簧丝材金相和TEM微结构进行对比分析的基础上,探讨了应力松弛的微观机制.结果表明,环境温度与初始应力水平对松弛速率具有显著影响.基于应力松弛过程的热激活特性,建立了60Si2Mn螺旋压缩弹簧的贮存寿命预测方程,并对不同应力水平下弹簧的室温和高温贮存寿命进行了合理预测.  相似文献   

14.
A single asymptotic derivation of three classical nonlinear plate theories is presented in a setting which preserves the frame-invariance properties of three-dimensional finite elasticity. By a successive scaling of the external loading on the three-dimensional body, the nonlinear membrane theory, the nonlinear inextensional theory and the von Kármán equations are derived as the leading-order terms in the asymptotic expansion of finite elasticity. The governing equations of the nonlinear inextensional theory are of particular interest where 1) plane-strain kinematics and plane-stress constitutive equations are derived simultaneously from the asymptotic analysis, 2) the theory can be phrased as a minimization problem over the space of isometric deformations of a surface, and 3) the local equilibrium equations are identical to those arising in the one-director Cosserat shell model. Furthermore, it can be concluded that with a regular, single-scale asymptotic expansion it is not possible to obtain a system of plate equations in which finite membrane strain and finite bending strain occur simultaneously in the leading-order term of an asymptotic analysis.  相似文献   

15.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.  相似文献   

16.
Some new classes of constitutive relations for elastic bodies have been proposed in the literature, wherein the stresses and strains are obtained from implicit constitutive relations. A special case of the above relations corresponds to a class of constitutive equations where the linearized strain tensor is given as a nonlinear function of the stresses. For such constitutive equations we consider the problem of decomposing the stresses into two parts: one corresponds to a time-independent solution of the boundary value problem, plus a small (in comparison with the above) time-dependent stress tensor. The effect of this initial time-independent stress in the propagation of a small wave motion is studied for an infinite medium.  相似文献   

17.
A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a dissipative component, both of which experience the same total dilatation and distortion. The stress response of the purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress experiments on superficial musculoaponeurotic system and facial skin.  相似文献   

18.
19.
Summary  A finite element technique is presented for the analysis of one-dimensional torsional plastic waves in a thin-walled tube. Three different nonlinear consitutive relations deduced from elementary mechanical models are used to describe the shear stress–strain characteristics of the tube material at high rates of strain. The resulting incremental equations of torsional motion for the tube are solved by applying a direct numerical integration technique in conjunction with the constitutive relations. The finite element solutions for torsional plastic waves in a long copper tube subjected to an imposed angular velocity at one end are given, and a comparison with available experimental results to assess the accuracy of the constitutive relations considered is conducted. It is demonstrated that the strain-rate dependent solutions show a better agreement with the experimental results than the strain-rate independent solutions. The limitations of the constitutive equations are discussed, and some modifications are suggested. Received 9 February 1999; accepted for publication 28 March 2000  相似文献   

20.
《力学快报》2022,12(2):100326
With the fast evolution of wireless and networking communication technology, applications of surface acoustic wave (SAW), or Rayleigh wave, resonators are proliferating with fast shrinking sizes and increasing frequencies. It is inevitable that the smaller resonators will be under a strong electric field with induced large deformation, which has to be described in wave propagation equations with the consideration of nonlinearity. In this study, the formal nonlinear equations of motion are constructed by introducing the nonlinear constitutive relation and strain components in a standard procedure, and the equations are simplified by the extended Galerkin method through the elimination of harmonics. The wave velocity of the nonlinear SAW is obtained from approximated nonlinear equations and boundary conditions through a rigorous solution procedure. It is shown that if the amplitude is small enough, the nonlinear results are consistent with the linear results, demonstrating an alternative procedure for nonlinear analysis of SAW devices working in nonlinear state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号