首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper proposes and compares two approaches based on off- and in-line solid-phase extraction (SPE), intended to enhance sensitivity in capillary electrophoresis with ultraviolet detection (CE-UV) using as a model the determination of ochratoxin A (OA) in river water samples. In the off-line SPE mode, the reversed-phase sorbent (octadecilsylane, C18) selectively retains the target analyte (OA) and allows large volumes of the sample (70 mL) to be introduced and subsequently eluted in a small volume (0.1 mL) of an appropriate solution. In the in-line SPE mode, a custom-made microcartridge is inserted near the inlet of the capillary, which is filled with the same C18 sorbent. This solid phase selectively retains OA present in a sample volume as low as approximately 640 μL for subsequent elution with ca. 135 nL of an appropriate eluent. The limit of detection (LOD) obtained with the in-line SPE method was 1 ng L-1, which is 3 orders of magnitude lower than that obtained with CE-UV and roughly 1 order lower than that provided by the off-line SPE-CE-UV method.  相似文献   

2.
In the present study, electro membrane isolation (EMI) of four nerve agent degradation products has been successfully explored. In the procedure, a polypropylene sheet membrane folded into an envelope with an open end with its wall pores impregnated with 1-octanol was employed as the artificial supported liquid membrane (SLM). The envelope containing the extractant or aqueous acceptor phase (at pH 6.8) was immersed in the sample or donor phase (also aqueous at a pH of 6.8) for extraction. This ensured that the target analytes were fully ionized. A voltage was then applied, with the negative electrode placed in the donor phase with agitation, and the positive electrode in the acceptor phase. The ionized analytes were thus driven to migrate from the donor phase across the SLM to the acceptor phase. The factors influential to extraction: type of organic solvent, voltage, agitation speed, extraction time, pH of the donor and acceptor phase and concentration of humic acids were investigated in detail. After extraction, the acceptor phase was collected and directly injected for capillary electrophoretic (CE) analysis. Combined with capacitively coupled contactless conductivity detection (C(4)D), the direct detection of these compounds could be achieved. Moreover, large-volume sample injection was employed to further enhance the sensitivity of this method. Limits of detection (LODs) as low as ng/mL were reached for the studied analytes, with overall LOD enhancements of four orders of magnitude.  相似文献   

3.
A possibility of a combination of supported liquid membrane (SLM) and solid-phase extraction (SPE) for the determination of atrazine at microgram level in different type of fruit juices is presented. In comparison to SPE extraction from juice samples, the application of SLM-SPE enrichment provides much cleaner extracts and the possibility of lowering the limit of detection as low as 30 microg/l. However, it was also shown that by appropriate manipulation of SLM extraction conditions mainly flow-rate of donor phase and volume ratio between donor and acceptor phase, the level of detection can be further decreased to 10 microg/l. The results suggest that the application of SLM extraction prior to SPE is an alternative method for atrazine enrichment from complicated liquid matrices and could be used as routine method for the clean-up of such samples.  相似文献   

4.
The present work has for the first time described nano-electromembrane extraction (nano-EME). In nano-EME, five basic drugs substances were extracted as model analytes from 200 μL acidified sample solution, through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE), and into approximately 8 nL phosphate buffer (pH 2.7) as acceptor phase. The driving force for the extraction was an electrical potential sustained over the SLM. The acceptor phase was located inside a fused silica capillary, and this capillary was also used for the final analysis of the acceptor phase by capillary electrophoresis (CE). In that way the sample preparation performed by nano-EME was coupled directly with a CE separation. Separation performance of 42,000–193,000 theoretical plates could easily be obtained by this direct sample preparation and injection technique that both provided enrichment as well as extraction selectivity. Compared with conventional EME, the acceptor phase volume in nano-EME was down-scaled by a factor of more than 1000. This resulted in a very high enrichment capacity. With loperamide as an example, an enrichment factor exceeding 500 was obtained in only 5 min of extraction. This corresponded to 100-times enrichment per minute of nano-EME. Nano-EME was found to be a very soft extraction technique, and about 99.2–99.9% of the analytes remained in the sample volume of 200 μL. The SLM could be reused for more than 200 nano-EME extractions, and memory effects in the membrane were avoided by effective electro-assisted cleaning, where the electrical potential was actively used to clean the membrane.  相似文献   

5.
Actually there is a great trend on the development of effective analytical methods for monitoring trace levels of various phenols which can indicate, among others compounds, the water quality. A simple, inexpensive supported liquid membrane (SLM) device was used in combination with commercially available capillary electrophoresis (CE) equipment for the direct determination of chlorophenols in surface water samples. The manifold was used simultaneously to extract and preconcentrate the analytes from liquid samples. In the extraction set-up, the donor phase (4 mL) was placed in the CE vial, where a micro-membrane extraction unit (MMEU) accommodating the acceptor phase (100 μL) in its lumen was immersed. The supported liquid membrane was constructed by impregnating a porous Fluoropore Teflon (PTFE) membrane with a water-immiscible organic solvent (dihexyl ether). The extraction process was optimized with regard to the pH of the donor and acceptor phases, membrane liquid, extraction time and voltage applied to the inlet or outlet vial during extraction. The chlorinated phenols pentachlorophenol (PCP), 2,3,6 trichlorophenol (TCP) and 2,6 dichlorophenol (DCP) were thus efficiently separated by CE, using tris(hydroxymethyl)aminomethane (Tris) and an NaH2PO4 solution containing 1% (v/v) methanol at pH 10.5 as running buffer.  相似文献   

6.
This paper describes two different approaches for increasing the sensitivity for the analysis of ceftiofur by capillary electrophoresis (CE). Two different techniques based on the introduction of an enlarged volume of sample, namely large volume sample stacking (LVSS) and in-line solid phase extraction (SPE) were studied and compared. LVSS allowed the on-column electrophoretic preconcentration of ceftiofur without modification of the separation capillary. In-line SPE-CE was developed by using a home-made microcartridge that was filled with a reversed-phase sorbent (C18). The microcartridge was coupled in-line near the inlet of the separation capillary. LVSS and in-line SPE-CE allowed automated operation and improved sensitivity for the analysis of ceftiofur with respect to conventional CE. When environmental water samples were analyzed, an additional pretreatment step based on off-line SPE was necessary in both cases to further decrease the detection limits. In terms of sensitivity for the determination of ceftiofur in river water samples, the combination of off-line SPE with in-line SPE-CE was found the most sensitive with a detection limit of 10 ng L−1, whereas the method based on the use of off-line SPE with LVSS presented a detection limit of 100 ng L−1.  相似文献   

7.
The possible application of the supported liquid membrane (SLM) technique for the extraction of glyphosate is presented. For the extraction of this compound the SLM system has been applied with utilisation of Aliquat 336 as a cationic carrier incorporated into the membrane phase. The extraction efficiency of glyphosate [N-(phosphonomethyl)glycine] is dependent on the donor phase pH, carrier concentration in the organic phase and NaCl concentration in the acceptor phase. The optimal extraction conditions are: donor phase pH>11, acceptor phase of 2 M NaCl solution and the organic phase composed of 20% (w/w) Aliquot 336 solution in di-hexyl ether. Counter-coupled transport of chloride anions from the acceptor phase to the donor phase is a driving force of the mass transfer in this system.  相似文献   

8.
Determination of polyamines in biological fluids possesses medical diagnostic relevance. Despite the vast panel of analytical methods developed for polyamines they are not applied in routine clinical usage, mainly due to the time and labor consuming sample preparation step and complicated derivatization procedures. Thus, new simpler methods are needed. This paper describes a single hollow fiber SLM extraction method of polyamines followed by simple pre-column derivatization with tosyl chloride and HPLC-UV analysis. The influence of different parameters such as the extraction time, organic phase composition, acceptor pH, donor pH, acceptor volume, donor volume and stirring speed on the transport parameters and enrichment was studied and discussed. The optimized method was applied to real matrices such as urine and plasma.  相似文献   

9.
A large screening of different components in the supported liquid membrane (SLM) in electromembrane extraction (EME) was performed to test the extraction efficiency on eight model peptides. Electromembrane extraction from a 500 μL acidified aqueous sample containing the model peptides in the concentration 10 μg/mL was used. Extraction time was 5 min with an electric potential of 10 V and 900 rpm agitation of the sample vial. The samples were extracted through a hollow fiber-based SLM with different compositions of organic solvents and carriers. A small volume of acidified acceptor solution (25 μL) was after extraction analyzed directly, or with some dilution, on CE or HPLC. This article has identified mono- or di-substituted phosphate groups as the prominent group of carrier molecules needed to obtain acceptable recoveries. For the organic solvents, primary alcohols and ketones have shown promise regarding recovery and reproducibility, with some differences in selectivity. A new composition of the SLM, namely 2-octanone and tridecyl phosphate (90:10 w/w) has proved to give higher extraction recoveries and lower standard deviation than SLMs previously reported in the literature.  相似文献   

10.
In the current work, droplet-membrane-droplet liquid-phase microextraction (LPME) under totally stagnant conditions was presented for the first time. Subsequently, implementation of this concept on a microchip was demonstrated as a miniaturized, on-line sample preparation method. The performance level of the lab-on-a-chip system with integrated microextraction, capillary electrophoresis (CE) and laser-induced fluorescence (LIF) detection in a single miniaturized device was preliminarily investigated and characterized. Extractions under stagnant conditions were performed from 3.5 to 15 μL sample droplets, through a supported liquid membrane (SLM) sustained in the pores of a small piece of a flat polypropylene membrane, and into 3.5-15 μL of acceptor droplet. The basic model analytes pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from alkaline sample droplets (pH 12), through 1-octanol as SLM, and into acidified acceptor droplets (pH 2) with recoveries ranging between 13 and 66% after 5 min of operation. For the acidic model analytes Bodipy FL C5 and Oregon Green 488, the pH conditions were reversed, utilizing an acidic sample droplet and an alkaline acceptor droplet, and 1-octanol as SLM. As a result, recoveries for Bodipy FL C5 and Oregon Green 488 from human urine were 15 and 25%, respectively.  相似文献   

11.
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1‐heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R2) between 0.987 and 0.999 were obtained. The LODs of the EME‐IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications.  相似文献   

12.
A simple, reliable, and low‐cost method based on molecularly imprinted polymer as a selective sorbent of SPE was proposed for the determination of ochratoxin A (OTA) in beer, red wine, and grape juice by HPLC coupled with fluorescence detection (HPLC‐FLD). Samples were diluted with water and cleaned up with an AFFINIMIP® SPE OTA column. After washing and eluting, the analyte was analyzed by HPLC‐FLD. Under the optimized conditions, LOD and LOQ for OTA were 0.025 and 0.08 ng/mL, respectively. The recoveries of OTA from beer, red wine, and grape spiked at 0.1, 2, and 5 ng/mL ranged from 91.6 to 101.7%. Furthermore, after a simple regenerated procedure, the molecularly imprinted polymer based SPE column could be reused at least 14 times to achieve more than 80% recoveries of OTA in real samples. The developed method was applied to the detection of 30 beer, red wine, and grape juice samples and only four samples were contaminated by OTA with levels below the legal limits.  相似文献   

13.
This study investigates an off-line solid phase extraction (SPE) for improving the sensitivity in the capillary electrophoretic (CE) analysis of four cephalosporins. Two sorbents—LiChrolut-C18 and Oasis HLB—were used in a SPE process to detect cephalosporins in natural waters (tap, river and hospital sewage) and their performances were compared. By using Oasis HLB sorbent higher recoveries for river water were obtained (94–107% when 500 mL of sample were analyzed). The off-line SPE–CZE method was validated for river water with good detection limits (3 μg L−1) and the linearity ranged between 5 and 200 μg L−1.  相似文献   

14.
Summary Liquid chromatography (LC) and capillary electrophoresis (CE) have been compared for the analysis of the dyes brilliant blue and azorubine in red wines. A liquid-liquid extraction procedure followed by an ion-pair LC method was developed to separate the dyes from the wine polyphenols allowing reliable UV-spectral identification of the target dyes with limits of detection of 10 and 20 ppb for azorubine and brilliant blue, respectively. Because adulteration of wine with dyes is usually in the ppm level, CE proved to be a good alternative for the LC method. CE could be applied after a simple sample clean-up step by SPE eliminating interference from the bulk of the polyphenols. Although LC proved to be more sensitive compared to CE, the latter is more effective in reducing interferences from other wine components and showed the typical advantages of CE such as low solvent consumption and speed of analysis.  相似文献   

15.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

16.
A supported liquid membrane (SLM) technique was investigated to extract and preconcentrate Mn(II) from water, milk and blood serum. Di-2-ethylhexyl phosphoric acid (DEHPA) with kerosene as diluent was used as a carrier in the membrane to transport Mn(II) from the donor side to acceptor side. The membrane was modified with tri-n-octylphosphine oxide (TOPO) to increase its polarity. Various parameters were investigated to optimise the extraction efficiency: pH of the donor and acceptor phase, dilution factor, donor flow rate. Scanning electron microscope images of the membranes revealed that some matrix compounds were deposited on the surface, thus limiting the extraction process. The optimum conditions found were: pH 3 in the donor phase, 0.2 M nitric acid in the acceptor phase, donor flow rate between 1.0 and 0.3 ml min−1, 15% (w/v) DEPHA and 10% TOPO in kerosene as a carrier in membrane, and dilution factors of 20 times for blood serum and 30 times for milk. The extraction efficiencies were found to be low but constant and highly reproducible showing, strong dependence on sample matrix. The new SLM extraction probe was developed and optimised for Mn(II) extraction. Compared to traditional SLM configurations, this is the simplest configuration. The use of stirring allows the same sample to be extracted many times giving higher extraction efficiency and to minimise the sample size. Adsorptive stripping voltammetry (AdSV) was applied to measure Mn(II) concentration. The optimised method was used to determine the concentration of Mn(II) in water, milk and blood serum samples.  相似文献   

17.
A comparative study of two analytical methodologies for piroxicam quantitation in plasma by off-line and on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) is described. The SPE cartridges contained C8 for both extraction methods. The analytes piroxicam and tenoxican (internal standard) were separated on a C18 column with a mobile phase consisting of acetonitrile:20 mM phosphate buffer pH 3.1 (50:50, v/v) followed by UV detection at 360 nm. The validation of the methods demonstrated good recoveries (over 90%), sensitivity (limits of quantification of 0.05 microgram/ml with on-line SPE and 0.1 microgram/ml with off-line SPE, based on a 100 microliters and 200 microliters sample volume, respectively), accuracy and precision (better than 9.5%). Both methodologies have been used for bioequivalence studies.  相似文献   

18.
A capillary zone electrophoresis (CZE) method with UV-vis detection has been developed for the simultaneous monitoring of the major degradation products of metribuzin, i.e. deaminometribuzin (DA), deaminodiketometribuzin (DADK) and diketometribuzin (DK). The dissociation acid constants have also been estimated by CE and no significant differences have been observed with the values obtained by applying other techniques. Optimum separation has been achieved in less than 9 min in 40 mM sodium tetraborate buffer, pH 9.5 by applying a voltage of 15kV at 25 degrees C and using p-aminobenzoic acid as internal standard. In order to increase sensitivity, large volume sample stacking (LVSS) with polarity switching has been applied as on-line pre-concentration methodology. Detection limits of 10, 10 and 20 ng/mL for DA, DADK and DK, respectively were obtained. The method has been applied to soil samples, after pressurized liquid extraction (PLE). Samples were extracted at high temperature (103 degrees C and 1500 psi) using methanol as extraction solvent and sodium sulphate as drying agent. This PLE procedure was followed by an off-line pre-concentration and sample clean-up procedure by solid-phase extraction (SPE) using a LiChrolut EN sorbent column. These last two procedures were also suitable for the direct treatment of groundwater samples before CE analysis. The combination of both off-line and on-line pre-concentration procedures provided a significant improvement in sensitivity. LVSS provided pre-concentration factors of 4, 36 and 28 for DK, DA and DADK, respectively and with SPE a pre-concentration of 500-fold for the case of water samples and of 2.5-fold in the case of soil samples was obtained. The method is suitable for the monitoring of these residues in environmental samples with high sensitivity, precision and satisfactory recoveries.  相似文献   

19.
Automated coupling of headspace‐single drop microextraction (HS‐SDME) and CE has been demonstrated using a commercial CE instrument. When a drop hanging at the inlet tip of a capillary for CE is used as the acceptor phase, HS‐SDME becomes a simple but powerful sample pretreatment technique for CE before injection to facilitate sample cleanup and enrichment. By combining HS‐SDME with an on‐line sample preconcentration technique, large volume sample stacking using an electroosmotic flow pump, the sensitivity can be improved further. The overall enrichment factors for phenolic compounds were from 1900 to 3400. HS‐SDME large volume sample stacking using an electroosmotic flow pump was successfully applied to a red wine sample to obtain an LOD of 4 nM (0.8 ppb) for 2,4,6‐trichlorophenol which is a precursor for 2,4,6‐trichloroanisole causing the foul odor in wine called cork taint.  相似文献   

20.
The simultaneous analysis of aflatoxins B1, G1, B2, G2 and ochratoxin A in beer was carried out by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS). Mycotoxins were extracted, purified and concentrated from the beer sample in one step using a solid-phase extraction (SPE) cartridge that contained a polymeric sorbent. Optimization of different parameters, such as type of SPE sorbent, type and amount of wash solvent and pH of the sample, was carried out. The mobile phase consisted of a gradient of methanol + water (0.1% HCOOH) and a reversed-phase C18 column was used for the separation. The mass spectrometer used an electrospray ionization source operated in the positive mode to detect aflatoxins and in the negative mode to detect ochratoxin. UPLC/MS/MS is a rapid and sensitive technique that allows the separation of the five toxins in only 3.2 min. The limit of detection is 1 pg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号