首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A double suction centrifugal machine has been studied, both experimentally and numerically, operating as a pump and as a turbine. Experimentally, the static performance of the machine working as a pump was obtained. These measurements were compared with equivalent numerical results from a URANS calculation. As a second step, the numerical results have been exploited to get detailed information about the flow in both operating modes (pump and turbine). The main goals of the study are, first, the validation of the numerical procedure proposed and second, the possible turbine operation of the impeller, which could point out a wider working range for the machine. The first aspect is handled by detailed analysis in the pump mode, according to previous experience of the research group. The second objective is obtained by using the numerical model to explore the flow fields obtained, when working in an inverse mode. Therefore, the presented results join the use of a numerical methodology and the turbine mode of operation for a centrifugal impeller, providing insight into the flow characteristics. When working as a pump, the flow at the suction side is characterized by the existence of an inlet tongue, which tends to enforce a uniform flow for the nominal conditions. For the turbine mode, flow patterns in the impeller, volute and suction regions are carefully investigated. The influence of the specific geometrical arrangement is also considered for this operation mode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Results of a numerical study of a laminar separated flow behind a rectangular step on a porous surface with uniform injection or suction are described. Two cases are considered: an unconfined flow past a step and flow evolution in a confined channel (duct). It is shown that mass transfer on the surface causes strong changes in the flow structure and substantially affects the position of the reattachment point, as well as friction and heat transfer. More intense injection leads first to an increase in the separation-zone length and then to its rapid vanishing due to boundary-layer displacement. Vice versa, suction at high Reynolds numbers Re s > 100 reduces the separation-zone length. The duct flow has a complicated distribution of friction and heat-transfer coefficients along the porous surface owing to the coupled effect of the transverse flow of the substance and changes in the main flow velocity due to mass transfer. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 1, pp. 18–28, January–February, 2006.  相似文献   

3.
本文对动失速型非定常分离涡结构的控制方法,在低速风洞中应用相平均测压技术进行了实验研究。在二元平板模型中部安装一作俯仰振荡的扰流板产生动失速型分离涡,在其上游安装另一用作控制的小扰流板。实验结果表明,应用前置的振荡小扰流板可影响并改变动失速分离涡的强度和对流特性。在最有利的控制相位下,涡吸力峰可降低48%,涡对流时间可以推迟0.19周期。对于间歇式振荡扰流板,采用相位提前控制方式比相位滞后控制方式更有效。  相似文献   

4.
Summary The problem of laminar flow through a porous annulus with constant velocity of suction at the walls and with swirl is reduced to the solution of four non-linear differential equations. The significance of each of these equations is discussed. By taking the swirl to be zero series solutions are obtained for (i) small suction or blowing (ii) when the total flow into the channel through the walls is small. Finally the asymptotic behaviour of the flow for large suction or blowing is discussed.  相似文献   

5.
Hayat  T.  Asghar  S.  Siddiqui  A.M. 《Meccanica》1999,34(4):259-265
An exact analytic solution of the unsteady Navier–Stokes equations is obtained for the flow caused by the non-coaxial rotations of a porous disk and a fluid at infinity. The porous disk is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous disk is also discussed. Further, it is shown that a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. In addition, the flow due to porous oscillating disk and a fluid at infinity rotating about an axis parallel to the z-axis is attempted as a second problem. Sommario. Si studia il flusso non stazionario prodotto dall'oscillazione di un disco poroso in un fluido e si fornisce una soluzione analitica delle equazioni di Navier–Stokes. Si discute l'effetto di una suzione/iniezione e di una variazione sull'ampiezza della velocità' di oscillazione. Infine si studia il flusso dovuto alle oscillazioni non coassiali di un disco poroso e di un fluido all'infinito.  相似文献   

6.
Three-dimensional corner stall is one of the key factors limiting the compressor performance. This paper presents a detailed experimental and computational study of a flow control strategy involving the endwall suction, aiming to eliminate the hub corner stall in a highly loaded axial compressor cascade. Various mass flow suction cases were parametrically tested with the aim of eliminating the corner stall by applying a minimum suction flow ratio. In the experiments, seven-hole pressure probe traverses, different loading distributions and surface oil flow visualizations were applied to address the flow and loss mechanisms in the cascade. Measurements were supplemented with numerical predictions from a commercially available CFD code. It was found that the corner stall, characterized by a large amount of reversed fluid, occupied a large region over the blade suction surface in the highly loaded compressor airfoil, rather than occurring at the junction of a blade suction surface and the endwall as in the conventionally loaded compressor airfoil. By applying flow control, the dominant flow structures, e.g. the flow separations and particularly the corner stall, within the compressor cascade were significantly affected. The maximum spanwise penetration depth of the endwall flow on the suction surface was significantly decreased once the endwall suction flow was applied. Furthermore, the corner stall was completely eliminated by suctioning the mass flow at a specific ratio of the inlet boundary layer flow rate. The midspan flow field was not notably affected, and a further increase in suction mass flow did not benefit the flow field approaching the endwall.  相似文献   

7.
This paper treats the question of feedback linearizing control oftwo-dimensional incompressible, unsteady wake flow. For definiteness,flow past a circular cylinder is considered, but the design approachpresented here is applicable to other flow control problems. Twofinite-dimensional lower-order models based on Proper OrthogonalDecomposition (POD) of dimension N with N actuators are considered.Models I and II are obtained using control function and penalty functionmethods, respectively. Control action can be achieved by a combinationof suction, injection, and synthetic jets. For the design ofcontrollers, it is assumed that the system matrices of the POD modelsare unknown. Nonlinear adaptive control systems for the two models arederived. For model I, nontrivial zero-error dynamics exists, which playa key role in the stability of the closed-loop system. But for model II,global adaptive trajectory control is achieved. In the closed-loopsystem, the mode amplitudes asymptotically follow the referencetrajectories. Simulation results for a 4-mode POD model obtained usingthe penalty function method are presented. These results show that inthe closed-loop system, unsteadiness in the mode amplitudes can besuppressed in spite of large uncertainties in the flow model.  相似文献   

8.
A classification of mathematical models of laminar boundary layer suction is presented. The conditions of singular separation near the tip of a plate are analyzed and the optimal ejection rate distribution necessary for preventing this separation is found. It is shown that, by using inviscid-fluid ejection, it is possible to eliminate the pressure-gradient singularity, which is the cause of the singular separation, and the optimal ejection rate distribution near the edge necessary for this is found. With reference to an exact solution of the Navier-Stokes equations, the unseparated flow about a circle with ejection at the back holder is demonstrated. The flow structure in the presence of fluid injection into the boundary layer is discussed.  相似文献   

9.
10.
This paper numerically investigates the effectiveness of the control of steady suction on a stationary circular cylinder with several isolated suction holes on the surface at a subcritical Reynolds number. The control effectiveness as a function of the azimuthal position, spanwise spacing and suction flow rate of the suction holes on the control of the aerodynamic forces on the cylinder and the suppression of alternate vortex shedding are taken into account. The study of the azimuthal location of the suction holes indicates that azimuthal angles of θ=90° and 270°, which are close to the separation point, provide the most substantial decreases in the aerodynamic forces. When restricted to the most effective azimuthal angle, a remarkable control effectiveness can be achieved when the axial spacing between two neighboring suction holes is less than a minimum value even under a small suction momentum coefficient. However, if the axial spacing exceeds the minimum spacing, the control effectiveness will not be saturated even under a very large suction momentum coefficient. Thus, the cause of the effective aerodynamic force control is suggested to be a result of obvious three-dimensional phenomenon in the near wake, which is characterized by the generation of a convergent flow between two neighboring suction hole sections and a stronger, larger three-dimensional vortex pair adjacent to the convergent flow. It has been suggested that this strongly three-dimensional flow pattern is induced by the strong interaction between two neighboring but counter-rotating three-dimensional vortices separately produced by two neighboring suction holes. Moreover, the effects of such three-dimensional flow patterns are investigated in detail based on variations in the flow field and sectional aerodynamic forces in different cross sections. Finally, the upper limit of the axial spacing between two neighboring suction holes to form such a three-dimensional flow pattern is suggested to be between 0.75 D and 1.5 D when the suction flow rate exceeds a certain value.  相似文献   

11.
In the present experimental investigation the surface pressure distribution, vortex shedding frequency, and the wake flow behind a porous circular cylinder are studied when continuous suction or blowing is applied through the cylinder walls. It is found that even moderate levels of suction/blowing (5% of the oncoming streamwise velocity) have a large impact on the flow around the cylinder. Suction delays separation contributing to a narrower wake width, and a corresponding reduction of drag, whereas blowing shows the opposite behaviour. Both uniform suction and blowing display unexpected flow features which are analysed in detail. Suction shows a decrease of the turbulence intensity throughout the whole wake when compared with the natural case, whilst blowing only shows an effect up to five diameters downstream of the cylinder. The drag on the cylinder is shown to increase linearly with the blowing rate, whereas for suction there is a drastic decrease at a specific suction rate. This is shown to be an effect of the separation point moving towards the rear part of the cylinder, similar to what happens when transition to turbulence occurs in the boundary layer on a solid cylinder. The suction/blowing rate can empirically be represented by an effective Reynolds number for the solid cylinder, and an analytical expression for this Reynolds number representation is proposed and verified. Flow visualizations expose the complexity of the flow field in the near wake of the cylinder, and image averaging enables the retrieval of quantitative information, such as the vortex formation length.  相似文献   

12.
Separation control over a backward-facing step (BFS) flow by continuous suction was numerically investigated using the turbulence model of large eddy simulation (LES). The effect of suction control on the flow fields was scrutinised by altering the suction flow coefficient, and the results indicate that suction is not only very effective in shortening the reattachment length but also very influential in reducing the tangential velocity gradient and turbulence fluctuations of the reattached flows. With increasing increments of the absolute suction flow coefficient, the effect of suction control is more significant. Furthermore, the detailed flow fields (including the time-averaged stream and velocity fields) and turbulence characteristics (including the time-averaged resolved kinetic energy and RMS velocity) for the BFS models with or without suction are presented to discuss the mechanism of suction control. Comparisons of the time-averaged statistics between the numerical simulations and corresponding experiments are conducted, and it shows that the LES based on the dynamic kinetic energy subgrid-scale model (DKEM) can acquire exact results. Therefore, feasibility of the numerical methods to simulate suction-controlled models is validated.  相似文献   

13.
平行平板流动腔脉动流切应力的计算   总被引:5,自引:0,他引:5  
高度远小于横向和纵向几何尺寸的矩形平行平板流动腔是人们用以体外研究细胞在切应力作用下力学行为的主要工具之一。大多数研究者主要对定常层流情进行研究。本文通过对矩形平行平板流动腔内的层流脉动流进行详细分析,给出腔内速和腔室底部切应力的准确计算公式。当Womersley数较小时,准确公式简化为准定常公式。数值计算结果表明,在脉动流条件下,对于人们常用的流动腔几何尺寸,准定常公式具有相当高的精度。这为在脉  相似文献   

14.
Hybrid laminar flow control (HLFC) aims to reduce aircraft skin friction drag by controlling the boundary-layer characteristics through a combination of surface suction and surface profile shaping. Suction is applied through an array of microperforations in the surface; and, to enable HLFC design criteria to be established with confidence, a full understanding of how these suction perforations affect the boundary layer is required. The objective of this paper is to predict the flow field induced by surface suction through single and multiple rows of microperforations, at transonic cruise conditions. A broad range of cases are studied for a variety of geometric and flow configurations by solving the compressible, laminar, Navier-Stokes equations. The geometric parameters considered are perforation diameter, inclination to the surface, and perforation duct profile. The flow parameters consist of the boundary-layer displacement thickness and suction mass flow rate through the hole. From the predictions and analyses of the results, a wide variety of flow field patterns and features are observed; including longitudinal vortices, streamline curvature, large cross-flow velocities, inherently unstable velocity profiles, and a recirculation region at the perforation entrance. The perforation inlet shape is found to have a minimal effect on the induced flow field, but the level of streamwise vorticity is increased for inclined perforations. The size and shape of the sucked stream tube, which is currently used to predict the critical suction velocity, also is determined. For multiple rows of perforations, the flow field characteristics are shown to be influenced by significant interhole effects. The mass flow rate characteristics of microperforations are found to be insensitive to the ratio of hole diameter to boundary-layer displacement thickness. Also, conical bore holes are shown to provide substantial static pressure recovery due to diffusion effects.  相似文献   

15.
The self-similarity solutions of the Navier-Stokes equations are constructed for an incompressible laminar flow through a uniformly porous channel with retractable walls under a transverse magnetic field. The flow is driven by the expanding or contracting walls with different permeability. The velocities of the asymmetric flow at the upper and lower walls are different in not only the magnitude but also the direction. The asymptotic solutions are well constructed with the method of boundary layer correction in two cases with large Reynolds numbers, i.e., both walls of the channel are with suction, and one of the walls is with injection while the other one is with suction. For small Reynolds number cases, the double perturbation method is used to construct the asymptotic solution. All the asymptotic results are finally verified by numerical results.  相似文献   

16.
It is shown that when a viscous incompressible fluid is sucked through a stationary porous disk spontaneous rotation of the fluid sets in at a certain Reynolds number. This is consistent with the results of a specially designed experiment. Another unusual result is the existence of multicell regimes, corresponding to suction, when the force acting on the porous, rapidly rotating disk is a lift force and, moreover, anomalously large. Charts of the possible steady-state flow regimes, stable and unstable, have been constructed. In the case of fairly intense suction and rotation a stable self-oscillating regime is observed. In the limit of vanishingly small viscosity unusual boundary layer properties associated with suction are noted.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 53–65, November–December, 1989.  相似文献   

17.
If a fluid is electrically conductive, its flow may be controlled using electromagnetic forces. Meanwhile, this technique is a recognized tool even on an industrial scale for handling highly conductive materials like liquid metals. However, also fluids of low electrical conductivity as considered in the present study, like sea-water and other electrolytes, permit electromagnetic flow control. Experimental results on the prevention of flow separation by means of a streamwise, wall parallel Lorentz force acting on the suction side of inclined flat plates and hydrofoils will be presented.  相似文献   

18.
The problem of flow past a thin two-dimensional wedge at high subsonic velocity in a wind tunnel with partially perforated walls is considered for low suction flow rates. The solution of this model problem may be used in determining the optimal parameters of the suction system for which the aerodynamic characteristics in the tunnel are closest to those in an unbounded stream.In conclusion the author wishes to thank E. M. Kalinin for suggesting the study of this problem.  相似文献   

19.
In this study, two dimensional heat/mass transfer characteristics and flow features were investigated in a rectangular wavy duct with various corrugation angles. The test duct had a width of 7.3 mm and a large aspect ratio of 7.3 to simulate two dimensional characteristics. The corrugation angles used were 100°, 115°, 130°, and 145°. Numerical analysis using the commercial code FLUENT, was used to analyze the flow features. In addition, the oil-lamp black method was used for flow visualization. Local heat/mass transfer coefficients on the corrugated walls were measured using a naphthalene sublimation technique. The Reynolds number, based on the duct hydraulic diameter, was varied from 700 to 5,000. The experimental results and numerical analysis showed interesting and detailed features in the wavy duct. Main flow impinged on upstream of a pressure wall, and the flow greatly enhanced heat/mass transfer. On a suction wall, however, flow separation and reattachment dominantly affected the heat/mass transfer characteristics on the wall. As the corrugation angle decreased (it means the duct has more sharp turn), the region of flow stagnation at the front part of the pressure wall became wider. Also, the position of flow reattachment on the suction wall moved upstream as the corrugation angle decreased. A high heat transfer rate appeared at the front part of the pressure wall due to main-flow impingement, and at the front part of the suction wall due to flow reattachment. The high heat/mass transfer region by the main-flow impingement and the circulation flow induced at a valley between the pressure and suction walls changed with the corrugation angle and the Reynolds number. As the corrugation angle decreased, the flow in the wavy duct changed to transition to turbulent flow earlier.  相似文献   

20.
关于二相流、多相流、多流体模型和非牛顿流等概念的探讨   总被引:10,自引:0,他引:10  
刘大有 《力学进展》1994,24(1):66-74
本文分析了单相流、二相流和多相流等概念上的差异,也分析了单流体模型、双流体模型和多流体模型等概念上的差异,指出前面三种概念是按流动介质的客观物理构成划分的,而后者是按主观采用的研究方法划分的.目前这些概念在使用中存在一些混乱,如二相流与多相流,多相流与多流体模型等.本文还研究了扩散模型、非牛顿流模型和颗粒流模型等,指出前两种模型在分类上属于单流体模型,分析了非牛顿流模型、扩散模型和双(多)流体模型的特点和应用范围,最后,以泥石流为例讨论了以上概念的应用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号