首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribological properties of polyimide (PI) under four oils (including two perfluoropolyether oils and two silicon oils) lubricated conditions were comparatively investigated at room temperature in vacuum and Fomblin M30 and chlorine‐containing silicon oil were selected to study the friction and wear behaviors of PI‐based solid–liquid lubricants against steel at different temperatures in vacuum. Significant improvement in tribological performance of PI was found under oil‐lubricated conditions. The friction coefficient increased as the test temperature decreased for the mobility of liquid lubricant was limited at lower temperatures, while the wear rate exhibited distinct rule. Besides, no tribochemical reaction was detected at the contact surface of PI and chlorine‐containing silicon oil. However, the –CF3 and fluorinated C? O groups were detected on the worn tracks of PI/Fomblin M30 by X‐ray photoelectron spectroscopy, which indicated that tribochemical reaction happened to PI and Fomblin M30 under high temperature as well as the simulation of friction heat. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The friction and wear behaviors of ultra‐high molecular weight polyethylene (UHMWPE)/PI composite were investigated in a ring‐on‐block wear tester. Ti6Al4V alloy ring were selected as the counterbody in this study. It was found that the detachment of particles, ripples, and ploughs were observed under higher load. Plasma treatment efficiently improves the interfacial adhesion of UHMWPE/PI composite. Both the friction coefficient and wear increased with load, and the plasma treated one shows lower friction coefficient and wear.  相似文献   

3.
Plasma electrolytic nitrocarburizing (PEN/C) was applied to the surface of carbon steel under the boiling condition of saturated urea electrolyte. In addition to the general effect of the bath temperature, different applied voltages and processing times were also considered in this new process. Optical and scanning electron microscopy, X‐ray diffraction, microhardness and pin‐on‐disc wear tests were used to characterize the PEN/C‐treated surfaces. A mixture of θ‐(Fe3C) and ε‐(Fe2–3N) was found in the compound layers. At certain conditions, dense surface layers with minimum porosity were observed at the top of the samples. The boiling condition resulted in special character of the compound layers on the surface. The layers consisted of some irregularities grown inward the samples andaffected the characteristics of the surface layers. The microhardness of the PEN/C‐treated layers increased up to 1280 HV0.1, which was 3 to 4 times higher than that for untreated material and higher than that obtained by other investigators (750 HV0.1). PEN/C decreased the wear loss of carbon steel significantly due to the change of the adhesive wear of untreated material to the abrasive mode of treated surfaces. The major advantage of this technique was a higher growth rate of the nitrocarburized layers and a more significant improvement in the tribological performance of the treated samples if compared to similarly oriented surface treatments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The functionalization of multi‐walled carbon nanotubes (MWNTs) was achieved by grafting furfuryl amine (FA) onto the surfaces of MWNTs. Furthermore, the functional MWNTs were incorporated into carbon fabric composites and the tribological properties of the resulting composites were investigated systematically on a model ring‐on‐block test rig. Friction and wear tests revealed that the modified MWNTs filled carbon fabric composite has the highest wear resistance under all different sliding conditions. Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) revealed that MWNTs were successfully functionalized and the modification led to an improvement in the dispersion of MWNTs, which played an important role on the enhanced tribological properties of carbon fabric composites. It can also be found that the friction and wear behavior of MWNTs filled carbon fabric composites are closely related with the sliding conditions such as sliding speed, load, and lubrication conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The nanostructured agglomerate feedstock which can be used for plasma spraying was obtained successfully by the reconstituting nanoparticle technique. Nanostructured and conventional ZrO2‐8wt%Y2O3 (8YSZ) thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying (APS) on NiCoCrAlY coated 45# steel substrates. The microstructure and phase composition of feedstock and corresponding coating were characterized by SEM and XRD. The elastic modulus was tested by the nanoindenter instrument. The surface residual stresses were examined by XRD stress test equipment. The numerical value probability statistics of surface residual stress by the Weibull distribution theory was implemented under different thermal spray parameters. The value of residual stresses increased with increasing the thickness of the ceramic coating. The surface residual stress of nanostructured 8YSZ coating is lower than that of the conventional 8YSZ coating. A physical mechanical model is put forward to explain the causation of the variation of residual stresses. At the same time, the variation characteristic of surface residual stress is discussed by introducing the closed form solution of residual stress of laminar layer plate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Multilayered diamond‐like carbon (DLC) nanocomposite coating has been deposited on silicon and stainless steel substrates by combination of cathodic arc evaporation and magnetron sputtering. In order to make DLC coating adhered to metal substrate, a chromium interlayer has been deposited with constant bias voltage of −150 V applied to the substrate. Dense multilayered coating consists of metallic or nonmetallic and tetrahedral carbon (ta‐C) layers with total thickness of 1.44 μm. The coating has been studied for composition, morphology, surface nature, nanohardness, corrosion resistance, and tribological properties. The composition of the coating has been estimated by energy‐dispersive spectroscopy. Field‐emission scanning electron microscopy and atomic force microscopy have been used to study the surface morphology and topography. ID/IG ratio of ta‐C:N layer obtained from Raman spectroscopy is 1.2, indicating the disorder in the layer. X‐ray photoelectron spectroscopy studies of individual ta‐C:N, CrN, and Cr‐doped DLC layers confirm the presence of sp2C, sp3C, CrN, Cr2N, and carbidic carbon, and sp2C, sp3C, and Cr carbide. Nanohardness studies show the maximum penetration depth of 70 to 85 nm. Average nanohardness of the multilayered DLC coating is found to be 35 ± 2.8 GPa, and Young's modulus is 270 GPa. The coating demonstrates superior corrosion resistance with better passivation behavior in 3.5% NaCl solution, and corrosion potential is observed to move towards nobler (more positive) values. A low coefficient of friction (0.11) at different loads is observed from reciprocating wear studies. Wear volume is lower at all loads on the multilayered DLC nanocomposite coating compared to the substrate.  相似文献   

7.
《先进技术聚合物》2018,29(8):2410-2415
It is generally acknowledged that wear behavior of approved water‐lubricated thermoplastic polymers are not susceptible to hydrostatic pressure in seawater environment. However, in our recent study reported in this letter, it has been shown that the wear behavior of thermoplastic polymers sliding in seawater is strongly dependent on the hydrostatic pressure. The correlation between hydrostatic pressure and wear rates of thermoplastic polymers can be expressed in an identical form of exponential function, which has been found to be susceptible to some factors, such as polymer property, seawater absorption, filler type, sliding condition, and counterpart material. Moreover, in this letter, a primary model has been proposed to illuminate the effect of hydrostatic pressure on the wear behavior of thermoplastic polymers sliding in deep sea.  相似文献   

8.
Ultra‐high molecular weight polyethylene composites reinforced with carbon fibers (CF) and polytetrafluoroethylene (PTFE) were prepared. The effects of fillers on the microstructure and fretting wear behavior of composites were investigated. The results of X‐ray diffraction and scanning electron microscopy measurements indicated that the microstructure of composites were greatly changed, and the distinct interface between fillers and matrix had been formed with the incorporation of CF and PTFE. In addition, results also showed that the simultaneously filled with CF and PTFE at a proper weight fraction contributed to dramatically improving the friction reducing and wear resistance of ultra‐high molecular weight polyethylene. It can be found that there exists synergism between fillers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In engineering applications, experimental data and insight from scientific investigations on wear properties of polyoxymethylene (POM) composites are important for engineers to understand how to design and formulate POM materials with high resistance to wear. In this work, clay and carbon fiber were utilized and incorporated into POM and the mechanical and wear properties, in specific wear rate, were then assessed. The experimental results suggested that the addition of clay increased the tensile modulus and strength. The mechanical and wear properties of POM composites were found to improve with the addition of the carbon fiber. Carbon fiber/clay/POM composite exhibited the lowest specific wear rate and friction coefficient.  相似文献   

10.
Ni–Co–P/nano‐sized Si3N4 composite coating was successfully fabricated on aluminum alloys by electroless plating in this work. The surface and cross‐sectional morphologies, composition, microstructure, microhardness, friction and wear behavior of deposits were investigated with SEM, EDS, XRD, Vickers hardness and high‐speed reciprocating friction, respectively. It was found that a Ni–Co–P/nano‐sized Si3N4 composite coating on aluminum alloy substrate is uniform and compact. The existence of nano‐sized Si3N4 particles in the Ni–Co–P alloy matrix causes a rougher surface with a granular appearance, and increases the microhardness but decreases the friction coefficients and wear rate of electroless coatings. Meanwhile, the effects of heat treatment at 200, 300, 400 and 500 °C for 1 h on the hardness and tribological properties were researched. It is revealed that both of the microhardness and tribological properties of Ni–Co–P coatings and Ni–Co–P/Si3N4 composite coatings increase with the increase of heating temperature in the range of 200–400 °C, but show different behavior for the two coatings after annealing at 500 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This article reports on the implementation of a soft computing technique based on artificial neural networks (ANNs) in analyzing the wear performance of a new class of hybrid composites filled with Linz–Donawitz slag (LDS). LDS is a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. In this work, hybrid composites consisting of short glass fiber (SGF) reinforced epoxy filled with different LDS content (0, 7.5, 15 and 22.5 wt%) are prepared by simple hand lay‐up technique. Solid particle erosion trials, as per ASTM G 76 test standards, are conducted on the composite samples following a well‐planned experimental schedule based on Taguchi design of experiments. Significant process parameters predominantly influencing the rate of erosion are identified. The study reveals that the LDS content is the most significant among various factors influencing the wear rate of these composites. Further, a model based on ANN for the prediction of erosion performance of these composites is implemented. The ANN prediction profiles for the characteristic wear properties exhibit very good agreement with the measured results demonstrating that a well‐trained network has been created. The simulated results explaining the effect of significant process variables on the wear rate indicate that the trained neural network possesses enough generalization capability of predicting wear rate even beyond the experimental range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, sensitive and selective liquid chromatography–electrospray ionization mass spectrometric method for the determination of loxoprofen in human plasma was developed. Loxoprofen and ketoprofen (internal standard) were extracted from 20 µL of human plasma sample using ethyl acetate at acidic pH and analyzed on an Atlantis dC18 column with the mobile phase of methanol:water (75:25, v/v). The analytes were quantified in the selected reaction monitoring mode. The standard curve was linear over the concentration range of 0.1–20 µg/mL with a lower limit of quantification of 0.1 µg/mL. The coefficient of variation and relative error for intra‐ and inter‐assay at four quality control levels were 2.8–5.2 and 4.8–7.0%, respectively. The recoveries of loxoprofen and ketoprofen were 69.7 and 67.6%, respectively. The matrix effects for loxoprofen and ketoprofen were practically absent. This method was successfully applied to the pharmacokinetic study of loxoprofen in humans. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Costunolide and dehydrocostuslactone are well‐known sesquiterpene lactones contained in many plants used as popular herbs, such as Saussurea lappa and Laurus novocanariensis, and have been considered as potential candidates for the treatment of various types of tumor. In the present work, a sensitive UPLC‐MS/MS for the quantification of costunolide and dehydrocostuslactone in biological matrices has been developed. The method is based on protein precipitation with acetonitrile followed by isocratic ultraperformance liquid chromatographic separation using methanol–formic acid (0.1% in water; 70:30, v/v) mobile phase. Detection was performed by ESI mass spectrometry in MRM mode with the precursor‐to‐product ion transitions m/z 233–187 and m/z 231–185, respectively. The calibration curves of analytes showed good linearity within the established range 0.19–760 ng/mL for costunolide and 0.23–908 ng/mL for dehydrocostuslactone. The lower limits of quantification of costunolide and dehydrocostuslactone were found to be 0.19 and 0.23 ng/mL, respectively. The intra‐day and inter‐day presicions of this method for the entire validation were less than coefficient of variation of 7% and the accuracy was within ±8% (relative error). The mean extraction recoveries were 73.8 and 75.3%, respectively. The method was found to be precise, accurate and specific during the study, and was successfully used to analyze the pharmacokinetics of costunolide and dehydrocostuslactone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Cefetamet is a potent antibiotic to treat respiratory and urinary tract infections. To improve oral bioavailability, it is administered as a prodrug, cefetamet pivoxyl hydrolyzed by esterase following absorption. A quantification method using a mass spectrometry was developed for the determination of cefetamet in human plasma. After a protein precipitation with acetonitrile, the analytes were chromatographed on a reversed‐phase C18 column and detected by a tandem mass spectrometer with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This method was used to measure the concentrations of the cefetamet in plasma after a single oral administration of 500 mg cefetamet pivoxyl. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Toosendanin (TSN) is a major triterpenoid existing in Melia toosendan, which has been used as a digestive tract parasiticide and insecticide but with serious hepatotoxicity. An ultra‐performance liquid chromatography–electrospray ionization–mass spectrometry method was developed for determination of TSN in rat plasma. Plasma samples were separated on Acquity UPLCTM BEH C18 column with acetonitrile and water as flow phase by gradient elution and determined by quadrupole mass spectrometer in negative selective ion monitoring mode. Usolic acid was used as internal standard. The calibration curves were linear over 0.02–3.0 µg/mL for TSN with a lower limit of quantification (LLOQ) of 20 ng/mL in rat plasma. The extraction recoveries of TSN were within 74.3–80.7% with an accuracy of 94.5–108.9%. The intra‐ and inter‐day precision values of the assay at three quality control levels were 8.8–13.8% and <13.9% at LLOQ level, respectively. The method was successfully applied to a pharmacokinetic study of TSN in rats after a single intravenous and oral administration of 2 and 60 mg/kg. The shorter Tmax, higher Vd and Cl of TSN after oral administration indicated that TSN could be absorbed, distributed and eliminated quickly in rats in vivo. The absolute bioavailability of TSN after oral administration was 9.9%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, a newly developed MoB–CoCr alloy coating was deposited on 316L stainless steel substrate by high velocity oxy‐fuel thermal spraying process. The microstructures and interfacial adhesion of the alloy coating were determined by scanning electron microscopy, X‐ray diffraction and three‐point bending. The results show that the coating consisted of ternary transition metal boride matrix phases (CoMo2B2, CoMoB) and a little amount of binary borides (MoB and CrB), the former composed of partially amorphous phase. The formation of the amorphous phase was attributed to the high cooling rates of molten droplets and the proper powder compositions. In the interfacial adhesion measurement, the delamination of the coating is induced during the three‐point bending test, and the interfacial fracture toughness is analyzed using a finite element analysis model. The critical load is determined by comparing the load versus deflection curves obtained by finite element analysis under assumed no crack conditions with the experimental data, and other inputs are determined by test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A confirmatory method for the simultaneous detection of 29 pharmaceuticals in fish muscle and plasma was developed by using solid‐phase extraction combined with ultra‐high performance liquid chromatography and tandem mass spectrometry. Fish samples were extracted with methanol and enriched using Oasis HLB solid‐phase extraction columns in one step. Twenty‐nine target pharmaceuticals were quantified by the internal standard method and the calibration curves showed good linearity in a wide range with determination coefficients of greater than 0.913. The detection limits of the pharmaceuticals ranged from 0.01 to 2.00 μg/kg (μg/L). The applicability of the method was checked by precision and recovery experiments. The average recoveries of the 29 pharmaceuticals were between 61 and 111%, and all the relative standard deviations were below 25%. Our reported method has been demonstrated to be sensitive, convenient, rapid, and reliable for the simultaneous determination of 29 pharmaceuticals in fish muscle and plasma. Real sample determination showed that 25 and 9 of the 29 compounds were detected in fish muscle and plasma, respectively.  相似文献   

19.
Liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53 to 64% and 72 to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi? Hydro‐RP? column with a gradient elution of acetonitrile and 10 mm ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon‐13‐labeled famotidine was used as internal standard. The calibration curves were linear (r2 > 0.99) in the concentration ranges of 0.631–252 ng/mL for umbilical and maternal plasma samples and 0.075–30.0 µg/mL for urine samples. The relative deviation of method was <14% for intra‐ and inter‐day assays, and the accuracy ranged between 93 and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma was less than 17%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A study of arsenic speciation in blood plasma of patients undergoing renal dialysis has been performed using HPLC coupled with ICP MS. It was found that the only detectable arsenic species present in the plasma was arsenobetaine. The limit of detection using an injection volume of 175 µl was found to be 0.25 ng of arsenic as arsenobetaine. Spiking experiments demonstrated recoveries of approximately 100%. In the absence of certified reference materials or an alternative technique, we believe this was the best way to demonstrate that the method was reliable and accurate. Arsenobetaine concentrations in pre‐dialysis plasma were similar to those for the healthy volunteers, although after dialysis the concentrations were significantly reduced. It is thus concluded that, except for a few patients, dialysis removed the arsenobetaine efficiently (hence preventing an accumulation of arsenic) and that no biotransformations were occurring. The exceptions to this conclusion were in a few patients whose arsenobetaine levels increased marginally after dialysis, but this was attributed to the levels both pre‐ and post‐dialysis being very close to the detection limit. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号