首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lacquer has been used in Asian countries for thousands of years as a natural coating material owing to its durable, adhesive, decorative, and protective properties. Protection and restoration of lacquer‐coated cultural remains has become an important subject, and identification of the lacquer types in old lacquer‐wares has also become very important for conservation and restoration research. This paper provides identification of several molecular species of vegetal‐source Asian lacquers with the aim of providing a methodology for application in the field of cultural heritage. Several chemical markers of the vegetal species in Asian lacquers were identified using a methodology consistent with the sampling restrictions required for cultural‐heritage objects. Surface analytical methods such as time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were used to characterize Korean, Chinese, and Vietnamese lacquers; avoiding time‐consuming and destructive extraction processes. These ToF‐SIMS results provided the structural characterization of a series of catechol derivatives. The ToF‐SIMS spectra of Rhus vernicifera from Korea and China, and Rhus succedanea from Vietnam indicated a series of urushiol and laccol repeat units, respectively, in the mass range of m/z 0–1800. Because of its sensitivity, specificity, and speed of analysis, the ToF‐SIMS technique can be used to investigate cultural lacquer‐coated treasures as well as to discriminate among different Asian lacquer coatings or binding mediums for the conservation or restoration of lacquer‐ware. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Three kinds of Korean lacquer saps were analyzed including chemical composition, enzymatic activity, molecular weight distribution, unsaturated degree of side chain, and drying property. The results were compared with Chinese and Japanese lacquer saps all collected in the same month (August 2012 and 2013) to investigate similarities and differences. Compared with Chinese and Japanese saps, the Korean lacquer sap contains the most lipids (84.9%) and urushiol triene (56.1%) components and the second highest enzyme activity after Chinese lacquer sap. In the drying and film hardness test, Korean and Chinese film reached a stronger hardness sooner than Japanese lacquer film; in 21 days the former reached 2H and the latter only H. The results of IR, NMR, and GC-MS analysis showed slight differences due to different growing conditions.  相似文献   

3.
Allyl methacrylate was polymerized in CCl4 solution by α,α′‐azoisobutyronitrile at 50, 60, and 70°C. The kinetic curves were auto‐accelarated types at 60 and 70°C, but almost linear at 50°C. Arrhenius activation energy was 77.5 kJ/mol. The polymer was insoluble in common organic solvents. It was characterized by FT‐IR, NMR, DSC, TGA and XPS methods. About 98–99% of allyl side groups were remained as pendant even after completion of the polymerization. The spectroscopic and thermal results showed that polymerization is not a cyclopolymerization type, but may have end group cyclization. The high molecular weight is the main cause of a polymer being insoluble even in the early stage of the polymerization. Molecular weight of 1.1×106 for a soluble polymer fraction was measured by light scattering method. The Tg of polymer was 94°C, and after curing at 150–200°C, increased to 211°C. The thermal pyrolysis of polymer at about 350°C gave an anhydride by linkage type degradation, and side group cyclization. The XPS analysis showed the presence of radical fragments of AIBN (initiator) and CCl4 (solvent) associated with oligomers.  相似文献   

4.
We report the characterization of Firpic (iridium(III)bis[4,6‐di‐fluorophenyl]‐pyridinato‐N,C2,]picolinate) organic thin film prepared by vacuum deposition to provide a systematic route to organic film quantification. To analyze the characteristics of thin Firpic films on a Si substrate, various techniques such as XPS, Fourier transform infra‐red (FT‐IR) spectrometer, and atomic force microscopy (AFM) are utilized. The Firpic films remain stable without surface morphological or compositional change during deposition and after exposure to X‐ray irradiation or atmospheric environment, for which qualities these films are believed to be an ideal platform as a pure organic thin film. The monotonic increases in FT‐IR and XPS intensities with film thickness are matching well with each other. In particular, from the XPS intensity analysis, the relative atomic sensitivity factors of the present system, electron attenuation length, and molecular density in the organic thin film can be evaluated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A poly phenylene vinylene (PPV‐type) oligomer used in organic photovoltaics was designed to facilitate the interpretation of mass spectral data. A film of the oligomer was subjected to various degrees of illumination (1000 W m?2, AM1.5) in air resulting in photooxidation of the material. The surface chemistry was monitored by TOF‐SIMS and XPS. The experiment described accelerated photooxidation without any contributions from interface processes. The photooxidative degradation mechanisms are described starting from the intact molecule through presumably, intermediate photooxidation products to small photooxidation products. The processes are described with various degrees of specificity and with varying degrees of detail. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) imaging using cluster primary ion beams is used for the identification of the pigments in the painting of Rebecca and Eliezer at the Well by Nicolas Poussin. The combination of the high mass resolution of the technique with a sub‐micrometer spatial resolution offered by a delayed extraction of the secondary ions, together with the possibility to simultaneously identifying both minerals and organics, has proved to be the method of choice for the study of the stratigraphy of a paint cross section. The chemical compositions of small grains are shown with the help of a thorough processing of the data, with images of specific ions, mass spectra extracted from small regions of interest, and profiles drawn along the different painting layers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
8.
This paper presents an integrated study on nine natural Chinese bronze patinas without causing any damage to the bronze substrates, employing five modern analytical techniques including X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR) and Raman spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP‐AES), and inductively coupled plasma mass spectrometry (ICP‐MS). Two artificial Chinese bronze patinas were also investigated by the same techniques for comparative purposes. As a result, XRD determined the chemical compositions of all selected samples and showed that the primary compound was malachite in natural soil environment under the general situation. Meanwhile, some interesting corrosion products such as gerhardtite and free copper were also observed. Three groups were classified according to the XRD results in order to provide a deeper insight into their spectroscopic characterization. Spectroscopic data of these patinas from FT‐IR and Raman spectroscopy are shown and interpreted in detail. ICP‐AES and ICP‐MS analyses provided valuable quantitative information, and made the study of the patinas more profound. Furthermore, all analytical results indicated that bronze patinas are extremely complex by virtue of the storage environment and their substrate alloys. The natural samples were rather heterogeneous and the artificial samples, especially the sample formed in the laboratory, were rather homogeneous of which the chemical constituents could be well defined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Field‐emission scanning electron microscopy (FESEM) was used to monitor pinecone‐like Cu(II) crystal growth on polymeric fibers for various growth times. In FESEM images, Cu(II) complexes and Cu(OH)2 crystal growth on poly(acryloamidino ethylene amine) and poly(acryloamidino diethylenediamine) were observed. Up to an elapsed time of 16 min, crystal growth was observed in only one direction. However, after an elapsed time of 20 h, pinecone‐like crystals covered the entire surfaces of the synthesized polymers. Fourier transform infrared spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy were used for analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1238–1247, 2005  相似文献   

10.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

11.
The miscibility and underlying hydrogen‐bonding interactions of blends of a fluorinated copolymer containing pyridine and a nonfluorinated copolymer containing methacrylic acid were studied with differential scanning calorimetry (DSC), transmission Fourier transform infrared (TX‐FTIR) spectroscopy, and X‐ray photoelectron spectroscopy (XPS), whereas the surface properties of the blends were investigated with contact‐angle measurements, time‐of‐flight secondary‐ion mass spectroscopy, XPS, and attenuated total reflectance Fourier transform infrared spectroscopy. DSC studies showed that the presence of a sufficient amount of 4‐vinylpyridine units in the fluorinated copolymer produced miscible blends with the nonfluorinated copolymer containing methacrylic acid. TX‐FTIR and XPS showed the existence of pyridine–acid interpolymer hydrogen‐bonding interactions. Even though the anchoring effect of hydrogen bonding hindered the migration of the fluorinated component to the blend surface, it could not completely eliminate the surface enrichment of the fluorinated component and the surface rearrangement of the fluorinated pendant chain. The air–blend interface was mainly occupied by the fluorinated pendant chain, and the surface energies of the blends were extremely low, even with only 1.5 wt % of the fluorinated component in the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1145–1154, 2004  相似文献   

12.
X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry were used to investigate the aging effects on the aminopropylsilane (APS) and quaternary ammonium surfactant‐treated mineral fibers. APS‐coated mineral fiber samples were treated with cationic surfactant and mineral oil and aged at 70 °C temperature and 95% humidity. From quantitative XPS measurements, an increase in the atomic composition of oxygen, nitrogen, and silicon is observed after aging. An increase in the protonated amino groups in the N1s high‐resolution spectra and C–N group in the C1s high‐resolution spectra is also observed. These results indicate that the concentration of hydrocarbon groups decreases after aging due to the partial removal of the long hydrocarbon chains of the surfactant and mineral oil and/or hydrolysis and segregation of APS to the fiber surface. The principal component analysis (PCA) was applied to the time‐of‐flight secondary ion mass spectrometry spectra, and an increase in the intensities of APS characteristic peaks were observed after aging. The observed increase in the signals of APS originates from underlying silanized fibers after the removal of the surfactant and mineral oil from the surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Since the adoption of deep ultraviolet lithography, time‐dependent haze defects have become an increasingly significant problem for the semiconductor industry as photomask lifetime continues to be shortened due to molecular contamination. With shorter wavelength lithography, the materials and space between the pellicle film and photomask surface can create a highly reactive environment resulting in the formation of haze defects on the photomask. One critical issue has been to understand the chemical mechanism of evolving defects on the photomask triggered by haze formation. This fundamental study was completed in a manufacturing environment in response to a sudden increase of haze defect growth during the transition to new device nodes. Time‐of‐Flight Secondary Ion Mass Spectrometry and Atomic Force Microscopy analysis techniques were essential in characterizing pellicle degradation in parallel with increased haze defect growth on the photomask surface. Extensive chemical and surface topography characterization of pellicle degradation led to a vitally important development and implementation of a design change in the pellicle frame for Flash Memory 3x and 2x nm node critical process layer photolithography. With an increased clearance between the pattern design and pellicle edge, the design modification ultimately brought an immense increase in photomask dose limitation between repell cleans and a reduction in haze growth, thus, reducing production costs and increasing wafer throughput.  相似文献   

14.
Traditional Asian lacquers are natural products with highly valued properties, including beauty, gloss, and durability. Pyrolysis‐gas chromatography/mass spectrometry is the technique of choice to study insoluble polymeric lacquer films. In the present study, pyrolysis‐gas chromatography/mass spectrometry results showed that the pyrolysis products of lacquer films were different for all of the studied trees, with urushiol derivatives detected in Toxicodendron vernicifluum from China, Japan, and Korea; laccol in Toxicodendron succedaneum from Vietnam; and thitsiol in Gluta usitata from Myanmar. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) was also used to characterize the Asian lacquers, avoiding the time‐consuming and destructive processes of other techniques. The ToF‐SIMS spectra provided structural characterization of a series of urushiol, laccol, and thitsiol derivatives for T vernicifluum from China, Japan, and Korea; T succedaneum from Vietnam; and G usitata from Myanmar, respectively. To differentiate the ToF‐SIMS results for the different Asian lacquer films, principal component analysis was used because it can extract differences in the spectra and indicate what peaks are responsible for these differences. The results indicate that lacquer films from different lacquer trees can be very different. Therefore, ToF‐SIMS with principal component analysis is suitable for the characterization and differentiation of Asian lacquer films in cultural heritage applications.  相似文献   

15.
The evaluation of nanostructure is important to develop the highly controlled nanomaterials. In this study, two kinds of layered titanate nanosheets, which were produced by using hexylamine and laurylamine, respectively, as surfactants were investigated by Gentle Secondary Ion Mass Spectrometry Gentle‐SIMS (G‐SIMS) and g‐ogram, which is the latest Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS) data analysis method for detecting more intact ions and obtaining the information on original chemical structures of samples precisely from complicated TOF‐SIMS spectra. As a result, molecular related ions of the surfactants were detected from each sample, and the structural information of samples was obtained. From both samples, surfactant molecular ions connected with hydrocarbon were detected as more intact ions rather than molecular ions of themselves. It was suggested that hydrophobic domains of their lamellar mesostructure are formed robustly by more than two surfactant molecules connected with each other linearly. After all, important information on the chemical structure of the layered titanate nanosheets, which would be difficult to be found by using typical structural analysis methods such as X‐ray diffraction and transmission electron microscopy, were obtained using G‐SIMS and g‐ogram. Therefore, it was shown that g‐ogram and G‐SIMS are helpful to evaluate the nanostructured materials. And it was also shown that g‐ogram is applicable to organic–inorganic materials which contain long hydrocarbon structures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The surface composition of amorphous Finemet, Fe73Si15.8B7.2Cu1Nb3, was studied by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The as‐received sample in the original state and after Ar+ sputter‐cleaning was analyzed at room temperature as well as after cooling to ? 155 °C. In the cooled state, the surface oxide layer composed of oxides of the alloy constituents was found to become enriched with elemental iron and depleted of elemental silicon, boron, oxygen and carbon as compared to the state at room temperature. Interaction of residual water vapor and hydrogen with the complex oxide layer occurring at low temperatures is believed to be responsible for the enhanced formation of surface hydroxides of the alloy constituents. The processes resulting in the observed redistribution of the elements on the surface of Finemet at low temperatures are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, fossil (Sequoioxylon) wood from the Oligocene–Miocene transition in İstanbul, Turkey was examined using non-destructive test methods to evaluate changes in anatomical and chemical structure. Molecular changes in the cell wall structure of the wood were determined using Fourier transform infrared (FTIR) and FT-Raman spectroscopy, along with the comparison to recent wood [Sequoiadendron giganteum (Lindl.)]. We found that the cell wall carbohydrates of the fossil wood were significantly more degraded compared with lignin; FT-Raman spectroscopy revealed the degradation in more detail compared with FTIR spectroscopy. FT-Raman spectra also demonstrated that hemicellulose and holocellulose were decreased in the fossil wood. Laser-induced breakdown spectroscopy (LIBS) analysis confirmed that the mass loss was due to the decreased H and O content of the fossil wood sample and was caused by decomposition. Light microscopy also showed that fossil and recent woods have similar anatomic structures, and that the micro-morphological structure of the fossil wood was well-preserved.  相似文献   

18.
Model samples of the interface of an adhesive joint containing small levels of aminopropyl triethoxysilane (APS) have been prepared in order to examine the interface formed with an aluminium substrate. X‐ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF‐SIMS) have been used to analyse and image the interface region in between the aluminium and an epoxy adhesive in order to ascertain the reactions by the organosilane which is present as a minor component within the system. It was found that APS was present at the interface between the adhesive and the substrate and that it had reacted with the substrate forming a covalent bond and was also crosslinked within the adhesive. Evidence of near to full hydrolysis of APS is also present within the spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The surface chemistry of a range of random poly l‐lactide‐co‐glycolide (PLGA) materials has been investigated using XPS, static secondary ion mass spectrometry (SSIMS) and gentle secondary ion mass spectrometry (G‐SIMS). The estimated mole fraction of lactide units provided by SSIMS was in good agreement with bulk composition and appeared not to have been affected by contamination. Conversely, XPS assessment of lactide compositions was unreliable due to hydrocarbon contamination contributions. In this study, we propose a novel model to demonstrate that by using SSIMS it is possible to infer the degree of trans‐esterification for PLGA co‐polymers synthesised from a mixture of lactide and glycolide homo‐dimers. This was determined by introducing two independent parameters, the ratio of trans‐esterified bonds to the total number of ester bonds, PT, and the lactide composition. The model has indicated that, for this set of polymers, PT was approximately 0.25. Furthermore, we have demonstrated that G‐SIMS successfully identified the structurally important key fragments leading to direct identification. Analysis by G‐SIMS showed that the glycolic acid units from all PLGA compositions are emitted in a lower energy‐fragmentation process than lactic acid units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A series of low‐density polyethylene (LDPE) surfaces, chemically modified using a number of oxidative techniques employed for adhesion enhancement (pretreatments), have been studied by time‐of‐flight (ToF) SIMS and XPS. The methods consisted of corona discharge, flame, electrochemical, chromic acid, acid dichromate and acid permanganate treatment. All except flame treatment were performed under mild and fairly severe conditions to yield a range of surface chemistries. The XPS analysis, using high energy resolution and a refined approach to C 1s curve‐fitting, provided some new insights into the quantitative assessment of the type and concentration of functional groups. Both positive and negative ion ToF‐SIMS spectra were obtained at high mass resolution. The oxygen‐containing fragments were identified by accurate mass analysis and subjected to a detailed comparison with the XPS results. No convincing relative intensity correlations could be identified that would allow particular secondary ion fragments to be associated strongly with particular functional groups (in this multi‐functional surface situation). Inorganic residues resulting from wet chemical treatments were also investigated and here the two techniques were found to be more complementary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号