首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel nanocomposites consisting of genipin cross‐linked chitosan (GC), poly(ethylene glycol) (PEG), and silver nanoparticles were prepared for such biomedical applications as the wound‐healing materials. Various amounts of silver nanoparticles were dispersed in the GC/PEG hydrogel matrix without severe aggregation. The effects of composition and silver nanoparticles on the physico‐chemical properties of samples were evaluated by infrared analysis, contact angle measurements, and swelling tests. The GC/PEG/Ag nanocomposite showed a pH‐sensitive swelling behavior. The surface hydrophilicity of GC/PEG/Ag nanocomposites was improved with the increase of silver nanoparticle content. L929 cell attachment was improved in the presence of silver nanoparticles. The antimicrobial function was assessed for the GC/PEG/Ag nanocomposites containing the silver content over 100 ppm. The silver nanoparticles had the dual functions of reinforcing structural stability and enhancing antimicrobial activity of GC/PEG/Ag nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
For the preparation of core‐shell nanoparticles containing functional nanomaterials, a photo‐cross‐linkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)‐b‐poly(2‐cinnamoyloxyethyl methacrylate)‐b‐poly(methyl methacrylate) (PEG‐PCEMA‐PMMA), was synthesized. This triblock copolymer was then used to encapsulate Au nanoparticles or pyrene. The triblock copolymer of PEG‐b‐poly(2‐hydroxyethyl methacrylate)‐b‐PMMA (PEG‐PHEMA‐PMMA) (Mn = 15,800 g/mol, Mw/Mn = 1.58) was first synthesized by activators generated by electron transfer atom transfer radical polymerization. Its middle block was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 45, 13, and 98, respectively. PMMA‐tethered Au nanoparticles (with an average diameter of 3.0 nm) or pyrene was successfully encapsulated within the PEG‐PCEMA‐PMMA micelles. The intermediary layers of the micelles were then cross‐linked by UV irradiation. The spherical structures of the PEG‐PCEMA‐PMMA micelles containing Au nanoparticles or pyrene were not changed by the photo‐cross‐linking process and they showed excellent colloidal stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4963–4970, 2009  相似文献   

3.
This study is aimed to highlight the possibility of engineering the multifunctional textile nanocomposite material based on the polyester (PES) fabric modified with colloidal Ag and TiO2 nanoparticles (NPs). The effects of concentration of NPs as well as the order of Ag and TiO2 NPs loading on antimicrobial, UV protective, and photocatalytic properties of PES fabrics were examined. The antimicrobial activity of differently modified PES fabrics was tested against Gram‐negative bacterium Escherichia coli, Gram‐positive bacterium Staphylococcus aureus, and fungus Candida albicans. The concentration of Ag colloid and the order of Ag and TiO2 NPs loading considerably affected the antimicrobial efficiency of PES fabrics. The fabrics provided maximum UV protection upon surface modification with Ag and TiO2 NPs. Ag NPs enhanced Ag NPs enhanced the photodegradation activity of TiO2 NPs and total photodegradation of methylene blue was achieved after 24 hr of UV illumination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Composites of electrospun poly(ethylene oxide) (PEO) fibers and silver nanoparticles (Ag NPs) were used as a soft template for coating with TiO2 by atomic layer deposition (ALD). Whereas the as‐deposited TiO2 layers on PEO fibers and Ag NPs were completely amorphous, the TiO2 layers were transformed into polycrystalline TiO2 nanotubes (NTs) with embedded Ag NPs after calcination. Their plasmonic effect can be controlled by varying the thickness of the dielectric Al2O3 spacer between Ag NPs and dye molecules by means of the ALD process. Electronic and spectroscopic analyses demonstrated enhanced photocurrent generation and solar‐cell performance due to the intense electromagnetic field of the dye resulting from the surface plasmon effect of the Ag NPs.  相似文献   

5.
Herein, we report a change in the mechanism of the oxidation of silver nanoparticles (Ag NPs) with the molecular weight of a poly(ethylene) glycol (PEG) capping agent. Characterisation of the modified nanoparticles is undertaken using dynamic light scattering and UV/Vis spectroscopy. Electrochemical analyses reveal that the oxidation of 6000 molecular weight (MW) PEG is consistent with a polymer‐gated mechanism, whilst for 2000 MW PEG the polymer does not hinder the oxidation. The 10,000 MW PEG Ag NPs are rendered almost electrochemically inactive. This study demonstrates the ability to alter and better understand the electron‐transfer mechanism in a room temperature ionic liquid (RTIL) by systematically altering the capping agent.  相似文献   

6.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Functional nanostructures of self‐assembled block copolymers (BCPs) incorporated with various inorganic nanomaterials have received considerable attention on account of their many potential applications. Here we demonstrate the two‐dimensional self‐assembly of anisotropic titanium dioxide (TiO2) nanocrystals (NCs) and metal nanoparticles (NPs) directed by monolayered poly(styrene)‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) copolymer inverse micelles. The independent position‐selective assembly of TiO2 NCs and silver nanoparticles (AgNPs) preferentially in the intermicelle corona regions and the core of micelles, respectively, for instance, was accomplished by spin‐coating a mixture solution of PS‐b‐P4VP and ex situ synthesized TiO2 NCs, followed by the reduction of Ag salts coordinated in the cores of micelles into AgNPs. Hydrophobic TiO2 NCs with a diameter and length of approximately 3 nm and 20–30 nm, respectively, were preferentially sequestered in the intermicelle nonpolar PS corona regions energetically favorable with the minimum entropic packing penalty. Subsequent high‐temperature annealing at 550 °C not only effectively removed the block copolymer but also transformed the TiO2 NCs into connected nanoparticles, thus leading to a two‐dimensionally ordered TiO2 network in which AgNPs were also self‐organized. The enhanced photocatalytic activity of the AgNP‐decorated TiO2 networks by approximately 27 and 44 % over that of Ag‐free TiO2 networks and randomly deposited TiO2 nanoparticles, respectively, was confirmed by the UV degradation property of methylene blue.  相似文献   

8.
In the present study, 2‐chloro‐3′,4′‐dihydroxyacetophenone (CCDP), a catechol derivative, was quaternized with poly(propylene oxide)‐g‐poly(dimethylaminoethyl methacrylate) (PPO‐g‐PDMA, PgP) to prepare surface coatings for various substrates. The surfaces of noble metals, oxides, and synthetic polymers were coated by immersion in an aqueous solution of CCDP quaternized with PgP (C‐PgP). The catechol functional groups that remained on the surface were used for deposition of Ag nanoparticles (AgNPs) on the coated surface, to provide a water‐resistant antibacterial polymer with long‐term antimicrobial activity. X‐ray photoelectron spectroscopy confirmed deposition of C‐PgP and AgNPs on the surface coated with the antibacterial polymer. Surface‐immobilized C‐PgP/AgNPs showed outstanding antibacterial activities against Staphylococcus aureus, a Gram‐positive bacterium, and Escherichia coli, a Gram‐negative bacterium. C‐PgP/AgNPs can be applied to a variety of substrates and can therefore be used as antibacterial materials in various fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and fast synthetic route to ultra‐highly concentrated silver nanoparticles with long‐term stability by reducing AgNO3 with ascorbic acid in the presence of polyethyleneimine (PEI) as a stabilizer in an aqueous phase is reported. The concentration of silver precursor was as high as 2000 mm (200 g of Ag nanoparticle per liter of water) and the reaction time was less than 10 min. The resulting silver nanoparticles show long‐term stability after two months of storage at room temperature without any signs of particle aggregation or precipitation in an aqueous phase. The successful ligand exchange of PEI‐stabilized silver nanoparticles to polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) without particle aggregation is also demonstrated. In addition, the catalytic activities of silver nanoparticles stabilized by various stabilizers prepared by the ligand exchange method was investigated. The PEI‐stabilized silver nanoparticles exhibited a higher stability than those of PEG‐ and PVP‐stabilized silver nanoparticles in the diffusion‐controlled catalytic reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4.  相似文献   

10.
Nanocomposites based on silver (Ag) and organically modified silicate (Ormosil) were prepared by an in situ reduction method, in which silver nitrate, tetraethoxysilane and N‐[3‐(trimethoxysilyl)propyl]diethylenetriamine (ATS) acted as precursor, linker, and colloidal suspension stabilizer, respectively. The objective of the study was to produce silver nanoparticles through AgNO3 chemical reduction in a continuous media, in which aminosilanes act as superficial modifiers of Ag nanoparticles, inhibiting their growth and preventing aggregation. The physical properties of the Ormosil/Ag composites were examined using NMR, electron spin resonance, scanning electron microscope, transmission electron microscope, and thermal gravimetric analysis spectroscopy, the results of which indicated that Ag was incorporated in the Ormosil matrix after impregnation. The Ag content and surface morphology of the Ormosil/Ag composites depended on the initial concentration of AgNO3. The antibacterial effects of the Ormosil/Ag composites were assessed by the zone of inhibition and plate‐counting methods, and an excellent antibacterial performance was discovered. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

11.
《先进技术聚合物》2018,29(1):254-262
Membrane technology has been successfully applied for the removal of dyes from wastewater in the textile industry. A novel poly(vinylidene fluoride) (PVDF) membrane was prepared via blending with different dosages of Ag‐TiO2‐APTES composite for dyeing waste water treatment in our study. And the effect of Ag‐TiO2‐APTES blended into the PVDF membrane was discussed, including the rejection rate of methylene blue (MB) dye, membrane morphology, surface hydrophilicity, antibacterial activity, and a certain photocatalytic self‐cleaning performance. X‐ray diffraction and Fourier transform infrared characterization confirmed that Ag‐TiO2 was functionalized by amount of hydroxyl group (−OH) and amino group (NH−), which provided by APTES. Contact angle measurement certified that the hydrophilicity of the membrane surface increased, with the contact angle decrease to 61.4° compared with 81.8° of original PVDF membrane. MB rejection rate was also increased to 90.1% after addition of Ag‐TiO2‐APTES, and the rejection of original membrane was only 74.3%. The morphologies of membranes were observed by scanning electron microscope, which indicated that Ag‐TiO2‐APTES had a good dispersion in membrane matrix and also improved the microstructure of membranes. Besides, UV irradiation experiments were performed on the composite films contaminated by MB, and the result showed that Ag‐TiO2‐APTES nanoparticle provided PVDF membrane with a certain photodegradation capacity under UV irradiation. Moreover, antibacterial activity of the composite membrane was also demonstrated through antibacterial experiment, Escherichia coli as the representative bacteria. Perhaps, this research may provide a new way for PVDF blending modification.  相似文献   

12.
In this study, synthesis and characterization of magnetic nanocarriers are reported for drug delivery based on the amphiphilic di‐block and tri‐block copolymers of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) with surface modified super‐paramagnetite Fe3O4 nanoparticles (magnetic nanoparticles (MNPs)). The synthesized block copolymers (methoxy poly(ethylene glycol) (mPEG)–PCL and PCL–PEG–PCL) were characterized by Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), and their properties such as critical micelle concentration, hydrophilicity to lipophilicity balance, and hydrolytic degradation were investigated. The block copolymers were functionalized with terminal azide groups (mPEG–PCL(N3) and (N3)PCL–PEG–PCL(N3)), and magnetic Fe3O4 nanoparticles were surface modified with poly(acrylic acid) (PAA) and propargyl alcohol (MNP–PAA–C≡CH). Magnetic nanocarriers were synthesized by click reaction between azide‐terminated block copolymers and MNP–PAA–C≡CH and characterized by FT‐IR, thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), and cytotoxicity was investigated by methyl thiazolyl tetrazolium assay. In vitro drug loading and release and release kinetics were investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Phase composition and structure of mesostructured materials, titanium dioxide and titanium dioxide modified with silver nanoparticles, have been studied by X-ray diffraction analysis. Introduction of Ag(I) ions into the initial composition and variation of the annealing temperature over the 500–950°C range allows controlling the anatase to rutile crystal phase ratio in the samples. The photocatalytic activity of TiO2 and TiO2/Ag samples has been demonstrated using the methyl orange degradation reaction. The catalytic properties of the materials have been found to depend on the anatase to rutile phase ratio and on the presence of silver nanoparticles.  相似文献   

14.
The synthesis of a luminescent quantum cluster (QC) of gold with a quantum yield of ~4 % is reported. It was synthesized in gram quantities by the core etching of mercaptosuccinic acid protected gold nanoparticles by bovine serum albumin (BSA), abbreviated as AuQC@BSA. The cluster was characterized and a core of Au38 was assigned tentatively from mass spectrometric analysis. Luminescence of the QC is exploited as a “turn‐off” sensor for Cu2+ ions and a “turn‐on” sensor for glutathione detection. Metal‐enhanced luminescence (MEL) of this QC in the presence of silver nanoparticles is demonstrated and a ninefold maximum enhancement is seen. This is the first report of the observation of MEL from QCs. Folic acid conjugated AuQC@BSA was found to be internalized to a significant extent by oral carcinoma KB cells through folic acid mediated endocytosis. The inherent luminescence of the internalized AuQC@BSA was used in cell imaging.  相似文献   

15.
Silver sulfide nanoparticles dispersed in sol-gel derived hydroxypropyl cellulose (HPC)-silica films have been successfully synthesized using H2S gas diffusion method. This is the first attempt to produce silver sulfide nanoparticles using this technique. Ag2S nanoparticles are generated through reaction of H2S gas with AgNO3 precursor dissolved in the HPC-silica matrix. Transmission electron microscope (TEM) and atomic force microscope (AFM) analysis reveal nanoparticles size distribution from 2.5 nm to 56 nm for H2S gas exposed sample. The surface chemistry of Ag2S nanoparticles and sol-gel derived HPC-silica matrix is confirmed by X-ray photoelectron spectroscopy (XPS). The negative shifts in the core-level XPS Ag (3d) binding energy of Ag2S nanoparticles are attributed to Ag : S surface atomic ratio exhibited by these nanoparticles with varying processing conditions. Following processing and characterization, suitability of the present method to produce silver sulfide ion-selective electrode is demonstrated by depositing Ag2S nanoparticles on a graphite rod. The high reponse function of the electrode is due to the presence of nanoparticles.  相似文献   

16.
The results of the synthesis of Ag—TiO2 nanostructures were presented. The optical properties of silver nanoparticles and Ag—TiO2 structures were studied. The size and shape of Ag—TiO2 nanostructures were determined. The electron density in silver, the damping constant of plasma oscillations, and the ratio between the masses of the Ag core and the TiO2 shell were determined from the absorption spectra of Ag and Ag—TiO2 solutions. It was shown that the semiconductor shell of titanium dioxide leads to a decrease in the electron density in silver nanoparticles and the damping constant of plasma oscillations.  相似文献   

17.
Synthesis of fused oxazolocoumarins has been achieved from the one‐pot tandem reactions of o‐hydroxynitrocoumarins with benzyl alcohol in toluene under catalysis in a sealed tube at 150°C. The catalysis was performed by gold nanoparticles supported on TiO2 (0.4 mol% Au) or FeCl3 (5%) or silver nanoparticles supported on TiO2 (1.7 mol% Ag).  相似文献   

18.
Many nanomaterials can be used as metal oxides (Ti, Ag, Zn, Cu, Mg, Ca, Ce, Yt, Al). Metal oxide nanoparticles have strong antimicrobial properties. The oxides that play a large role as antimicrobial agents can be divided into two major groups based on their mechanism of action i.e., those that involve oxidation and those that inhibit the production of Reactive Oxygen Species (ROS). Previous studies have shown that, toxic metals like silver and titanium, and their metals oxides, employ the ROS‐mediated mechanism that leads to oxidative stress‐related cytotoxicity, cancer, and heart diseases. Oxidative stress further leads to increased ROS production and also delays the cellular processes involved in wound heal‐ ing. Other metal oxide nanoparticles, like Y2O3, CeO2 and Al2O3 act as free radical scavengers. Out of these, aluminium oxide nanoparticles are more effective antimicrobial agents, than the other metal oxide nanoparticles. A combination of Al2O3 and other antimicrobial agents such as TiO2 may act as ideal antimicrobial agents, along with possessing free radical scavenging activity. This critical review aims to study the antimicrobial properties of different metal oxide nanoparticles and the mechanism of action in‐ volved, besides comparing their efficacy to eliminate bacteria.  相似文献   

19.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

20.
The fabrication of polyelectrolyte multilayer capsules with controllable submicron‐sized subdomains and the in situ synthesis of silver nanoparticles are reported. Because poly(acrylic acid) (PAA) is released from the shell of the capsules in the dissolution process of sacrificial cores, the remaining poly(4‐vinylpyridine) (PVP) forms subdomains of spheres with controllable sizes, which can be tuned by the number of PVP/PAA bilayers. This creates capsules with special surface morphology and enables the in situ synthesis of Ag nanoparticles within the PVP subdomains on the shell of capsules. In addition, the in‐situ formed Ag nanoparticles can be mostly released from PVP subdomains of capsules in pH 2.0 solution, whereas they are stable in neutral solution. These specially designed capsules containing Ag nanoparticles can be used as antimicrobial materials and potentially benefit remote drug release by laser activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号