首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Argon cluster ions have enabled molecular depth profiling to unprecedented depths, with minimal loss of chemical information or changes in sputter rate. However, depth profiling of ultrathick films (>100 μm) using a commercial ion source oriented at 45° to the surface causes the crater bottom to shrink in size because of a combination of the crater wall angle, sputter rate differences along the trailing-edge crater wall, and undercutting on the leading-edge. The shrinking of the crater bottom has 2 immediate effects on dual-beam depth profiling: first is that the centering of the analysis beam inside the sputter crater will no longer ensure the best quality depth profile because the location of the flat crater bottom progressively shifts toward the leading-edge and second, the shifting of the crater bottom enforces a maximum thickness of the film that could be depth profiled. Experiments demonstrate that a time-of-flight secondary ion mass spectrometry instrument equipped with a 20 keV argon cluster source is limited to depth profiling a 180 μm-thick film when a 500 μm sputter raster is used and a 100 μm square crater bottom is to be left for analysis. In addition, depth profiling of a multilayer film revealed that the depth resolution degrades on trailing-edge side of the crater bottom presumably because of the redeposition of the sputtered flux from the crater wall onto the crater bottom.  相似文献   

2.
B‐doped Si multiple delta‐layers (MDL) were developed as certified reference materials (CRM) for secondary ion mass spectrometry (SIMS) depth profiling analysis. Two CRMs with different delta‐layer spacing were grown by ion beam sputter deposition (IBSD). The nominal spacing of the MDL for shallow junction analysis is 10 nm and that for high energy SIMS is 50 nm. The total thickness of the film was certified by high resolution transmission electron microscopy (HR‐TEM). The B‐doped Si MDLs can be used to evaluate SIMS depth resolution and to calibrate the depth scale. A consistency check of the calibration of stylus profilometers for measurement of sputter depth is another possible application. The crater depths measured by a stylus profilometer showed a good linear relationship with the thickness measured from SIMS profiling using the calibrated film thickness for depth scale calibration. The sputtering rate of the amorphous Si thin film grown by sputter deposition was found to be the same as that of the crystalline Si substrate, which means that the sputtering rate measured with these CRMs can be applied to a real analysis of crystalline Si. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We attempted to make an accurate depth profiling in secondary ion mass spectrometry (SIMS) including backside SIMS for ultra‐thin nanometer order layer. The depth profiles for HfO2 layers that were 3 and 5 nm thick in a‐Si/HfO2/Si were measured using quadrupole and magnetic sector type SIMS instruments. The depth profiling for an ultra‐thin layer with a high depth resolution strongly depends on how the crater‐edge and knock‐on effects can be properly reduced. Therefore, it is important to control the analyzing conditions, such as the primary ion energy, the beam focusing size, the incidence angle, the rastered area, and detected area to reduce these effects. The crater‐edge effect was significantly reduced by fabricating the sample into a mesa‐shaped structure using a photolithography technique. The knock‐on effect will be serious when the depth of the layer of interest from the surface is located within the depth of the ion mixing region due to the penetration of the primary ions. Finally, we were able to separately assign the origin of the distortion to the crater‐edge effect and knock‐on effect. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Sample rotation during sputter depth profiling can improve the measured depth resolution. We examine some of the practical issues of particular relevance to rotation conditions in SIMS. There are many ways of arranging the rotation for sputtering and, to illustrate the issues, one configuration is studied. Through simulations of the spatial distribution of ion dose using a rastered ion beam and sample rotation, we demonstrate that significant variations in the distribution of ion dose across the surface can occur during the profile. With rotational frequencies much lower than raster frequencies, as used for Auger and XPS, these variations are typically small and have the same periodicity as the rotation. If rotational frequencies are similar to, or larger than the raster frequency, then large spatial variations in dose can occur. In this case, extreme care must be taken to ensure that the two frequencies are not related by a simple rational number and that the sputtering ion beam size should be significantly broader than the line spacing of the raster, but significantly smaller than the raster size. Specific recommendations are provided for setting both the rotation frequency and the size of the sputtering ion beam in order to ensure that the relative standard deviation of the ion dose across the analysis area remains lower than 1%. However, the best method may be a stepwise rotation of 90° after each analysis and sputtering cycle. © Crown copyright 2011. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

5.
Based on a brief review of the well‐established framework of definitions, measurement and evaluation principles of the depth resolution in sputter profiling for interfaces, delta layers, single layers and multilayers, an extension to additional definitions is presented, which include the full‐width‐at‐half‐maximum of layer profiles and non‐Gaussian depth resolution functions as defined by the Mixing‐Roughness‐Information depth (MRI) model. Improved evaluation methods for adequate analysis of sputter depth profiles as well as improved definitions of depth resolution are introduced in order to meet new developments in ToF‐SIMS and GDOES, and in cluster ion sputtering of so‐called delta layers in organic matrices. In conclusion, the full‐width‐at‐half‐maximum definition and measurement of depth resolution, Δz(FWHM), is found to be more appropriate than the traditional Δz(16–84%) in order to characterize depth profiles of single layers and multilayers, because it is also valid for non‐Gaussian depth resolution functions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Traditionally polymer depth profiling by X‐ray photoelectron spectroscopy (XPS) has been dominated by the damage introduced by the ion beam rather than the X‐rays. With the introduction of polyatomic and especially argon gas cluster ion‐beam (GCIB) sources for XPS instruments, this is no longer the case, and either source of damage may be important (or dominate) under particular conditions. Importantly, while ion‐beam damage is a near‐surface effect, X‐ray damage may extend micrometres into the bulk of the sample, so that the accumulation of X‐ray damage during long depth profiles may be very significant. We have observed craters of similar dimensions to the X‐ray spot well within the perimeter of sputter craters, indicating that X‐rays can assist GCIB sputtering very significantly. We have measured experimentally sputter craters in 13 different polymers. The results show that X‐ray exposure can introduce much more topography than might previously have been expected, through both thermal and direct X‐ray degradation. This can increase the depth of a crater by a remarkable factor, up to three in the case of poly‐L‐lactic acid and polychlorotrifluorothylene under reasonably normal XPS conditions. This may be a major source of the loss of depth resolution in sputter depth profiles of polymers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Size‐segregated particles were collected with a ten‐stage micro‐orifice uniform deposit impactor from a busy walkway in a downtown area of Hong Kong. The surface chemical compositions of aerosol samples from each stage were analyzed using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) operated in the static mode. The ToF‐SIMS spectra of particles from stage 2 (5.6–10 µm), stage 6 (0.56–1 µm), and stage 10 (0.056–0.1 µm) were compared, and the positive ion spectra from stage 2 to stage 10 were analyzed with principal component analysis (PCA). Both spectral analysis and PCA results show that the coarse‐mode particles were associated with inorganic ions, while the fine particles were associated with organic ions. PCA results further show that the particle surface compositions were size dependent. Particles from the same mode exhibited more similar surface features. Particles from stage 2 (5.6–10 µm), stage 6 (0.56–1 µm), and stage 10 (0.056–0.1 µm) were further selected as representatives of the three modes, and the chemical compositions of these modes of particles were examined using ToF‐SIMS imaging and depth profiling. The results reveal a non‐uniform chemical distribution from the outer to the inner layer of the particles. The coarse‐mode particles were shown to contain inorganic salts beneath the organics surface. The accumulation‐mode particles contained sulfate, nitrate, ammonium salts, and silicate in the regions below a thick surface layer of organic species. The nucleation‐mode particles consisted mainly of soot particles with a surface coated with sulfate, hydrocarbons, and, possibly, fullerenic carbon. The study demonstrated the capability of ToF‐SIMS depth profiling and imaging in characterizing both the surface and the region beneath the surface of aerosol particles. It also revealed the complex heterogeneity of chemical composition in size and depth distributions of atmospheric particles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
For the accurate measurements of crater depths, ion sputtering rates and ion sputtering yields in studies of sputter‐depth profiling using Auger electron spectroscopy (AES) or X‐ray photoelectron spectroscopy (XPS), a proposed mesh replica method has been evaluated. In this method, during ion sputtering, grids of between 50 and 400 mesh (per inch) are placed on the sample to retain unsputtered regions of the original surface to be used as reference. This enables a more accurate measurement of the depth to be made using a stylus profilometer close to the analytical region. The closer‐pitch meshes were thought to offer the prospect of measurements of higher accuracy. Calculations show that sputter deposits from the mesh sides may limit the mesh numbers used to 100 or those of a wider pitch for both stationary and rotated samples. A correlation with published data for stationary samples and new data for rotated samples confirms the calculations. In practice, it is difficult, without a special holder, to have intimate contact between the grid and sample. Such a holder is described. Further calculations concerning the shadowed profiles at the grid bar regions show that the grids may lift off the sample surface by 4–16 µm. This leads to non‐vertical crater walls in each mesh aperture. This effect, however, does not change the above conclusion on the mesh sizes to be used. In this range, the spurious appearance of Auger electrons emitted from the grid material is calculated to be less than 1%. This conclusion applies to the meshes evaluated here, which range in thickness from 13 to 29 µm. Thinner meshes may lead to the applicability of proportionately closer meshed grids in sputter‐profiling applications. Copyright © 2006 John Wiley & Sons, Ltd. The contribution of Martin P. Seah of the National Physical Laboratory is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.  相似文献   

9.
An effect of measurement conditions on the depth resolution was investigated for dual‐beam time of flight‐secondary ion mass spectrometry depth profiling of delta‐doped‐boron multi‐layers in silicon with a low‐energy sputter ion (200 eV – 2 keV O2+) and with a high‐energy primary ion (30 keV Bi+). The depth resolution was evaluated by the intensity ratio of the first peak and the subsequent valley in B+ depth profile for each measurement condition. In the case of sputtering with the low energy of 250 eV, the depth resolution was found to be affected by the damage with the high‐energy primary ion (Bi+) and was found to be correlated to the ratio of current density of sputter ion to primary ion. From the depth profiles of implanted Bi+ primary ion remaining at the analysis area, it was proposed that the influence of high‐energy primary ion to the depth resolution can be explained with a damage accumulation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
X‐ray photoelectron spectroscopy is used to study a wide variety of material systems as a function of depth (“depth profiling”). Historically, Ar+ has been the primary ion of choice, but even at low kinetic energies, Ar+ ion beams can damage materials by creating, for example, nonstoichiometric oxides. Here, we show that the depth profiles of inorganic oxides can be greatly improved using Ar giant gas cluster beams. For NbOx thin films, we demonstrate that using Arx+ (x = 1000‐2500) gas cluster beams with kinetic energies per projectile atom from 5 to 20 eV, there is significantly less preferential oxygen sputtering than 500 eV Ar+ sputtering leading to improvements in the measured steady state O/Nb ratio. However, there is significant sputter‐induced sample roughness. Depending on the experimental conditions, the surface roughness is up to 20× that of the initial NbOx surface. In general, higher kinetic energies per rojectile atom (E/n) lead to higher sputter yields (Y/n) and less sputter‐induced roughness and consequently better quality depth profiles. We demonstrate that the best‐quality depth profiles are obtained by increasing the sample temperature; the chemical damage and the crater rms roughness is reduced. The best experimental conditions for depth profiling were found to be using a 20 keV Ar2500+ primary ion beam at a sample temperature of 44°C. At this temperature, there is no, or very little, reduction of the niobium oxide layer and the crater rms roughness is close to that of the original surface.  相似文献   

11.
This International Standard specifies a secondary ion mass spectrometric method using magnetic‐sector or quadrupole mass spectrometers for depth profiling of boron in silicon, and using stylus profilometry or optical interferometry for depth calibration. This method is applicable to single‐crystal, polycrystal or amorphous silicon specimens with boron atomic concentrations between 1 × 1016 and 1 × 1020 atoms cm?3, and to the crater depth of 50 nm or deeper. Optical interferometry is generally applicable to crater depths in the range 0.5–5 µm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
We have developed multiple short‐period delta layers as a reference material for SIMS ultra‐shallow depth profiling. Boron nitride delta layers and silicon spacer layers were sputter‐deposited alternately, with a silicon spacer thickness of 1–5 nm. These delta‐doped layers were used to measure the sputtering rate change in the initial stage of oxygen ion bombardment. A significant variation of sputtering rate was observed in the initial 3 nm or less. The sputtering rate in the initial 3 nm was estimated to be about four times larger than the steady‐state value for 1000 eV oxygen ions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
SIMS depth profiling during O2 + bombardment has been performed to analyse epitaxially grown Si p-n-p layers, which define the p-channel region in vertical Si-p MOS transistors, as well as to establish “on-chip” depth profiling of the functional vertical device. The SIMS detection limit of 31P in Si, phosphorus used as n-type dopant in the transistor, has been optimised as a function of the residual gas pressure in the SIMS analysis chamber and of the sputter erosion rate. We demonstrate that good vacuum during SIMS analysis combined with high erosion rates allows the simultaneous quantitative SIMS depth profiling of n- and p-type dopant concentrations in the vertical transistor. Small area “on-chip” SIMS depth profiling through the layered structure of Al-contact/TiSi2/Si(p-n-p)/Si-substrate has been performed. Factors influencing the depth resolution during “on-chip” analysis of the transistor are discussed especially in terms of sputtering induced ripple formation at the erosion crater bottom, which has been imaged with atomic force microscopy. Received: 15 August 1996 / Revised: 17 January 1997 / Accepted: 21 January 1997  相似文献   

14.
We study the deconvolution of the secondary ion mass spectrometry (SIMS) depth profiles of silicon and gallium arsenide structures with doped thin layers. Special attention is paid to allowance for the instrumental shift of experimental SIMS depth profiles. This effect is taken into account by using Hofmann's mixing‐roughness‐information depth model to determine the depth resolution function. The ill‐posed inverse problem is solved in the Fourier space using the Tikhonov regularization method. The proposed deconvolution algorithm has been tested on various simulated and real structures. It is shown that the algorithm can improve the SIMS depth profiling relevancy and depth resolution. The implemented shift allowance method avoids significant systematic errors of determination of the near‐surface delta‐doped layer position. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Argon gas cluster ion beam sources are likely to become much more widely available on XPS and SIMS instruments in the next few years. Much attention has been devoted to their ability to depth profile organic materials with minimum damage. What has not been the focus of attention (possibly because it has been very difficult to measure) is the large ratio of sputter yield for organic materials compared with inorganic materials using these sources and the special opportunities this presents for studies of organic/inorganic interfaces. Traditional depth profiling by monatomic argon ions introduces significant damage into the organic overlayer, and because sputter rates in both organic and inorganic are similar for monatomic ions the interface is often ‘blurred’ due to knock‐on and other damage mechanisms. We have used a quartz crystal technique to measure the total sputter yield for argon cluster ions in a number of materials important in medical implants, biomaterials and diagnostic devices, including polymethyl methacrylate, collagen, hydroxyapatite, borosilicate glass, soda lime glass, silicon dioxide and the native oxides on titanium and stainless steel. These data fit a simple semi‐empirical equation very well, so that the total sputter yield can now be estimated for any of them for the entire range of cluster ion energy typical in XPS or SIMS. On the basis of our total sputter yield measurements, we discuss three useful ‘figures‐of‐merit’ for choosing the optimum cluster ion energy to use in depth profiling organic/inorganic samples. For highest selectivity in removing the organic but not the inorganic material the energy‐per‐atom in the cluster should be below 6 eV. A practical balance between selectivity and reasonably rapid depth profiling is achieved by choosing a cluster ion energy having between around 3 and 9 eV energy‐per‐atom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Dependences of the depth resolution in Auger electron spectroscopy sputter‐depth profiling of a GaAs/AlAs superlattice reference material on the incident angle and energy of primary Ar+ ions were investigated. The results revealed that the depth resolution is improved for the lower primary energy as a square root of the primary energy of ions at both the incident angles of 50° and 70° , except for 100 eV at 50° , where the significant deterioration of the depth resolution is induced by the preferential sputtering of As in AlAs, and the difference in the etching rate between GaAs and AlAs. The deterioration of the depth resolution, i.e. the difference in the etching rate and the preferential sputtering, observed for 100 eV at 50° was suppressed by changing the incident angle of ions from 50° to 70° , resulting in the high‐depth resolution of ~1.3 nm. The present results revealed that the glancing incidence of primary ions is effective to not only reducing the atomic mixing but also suppressing the difference in the etching rates between GaAs and AlAs and the preferential sputtering in the GaAs/AlAs multilayered system. The results also suggest that careful attention is required for the optimization of conditions of sputter‐depth profiling using GaAs/AlAs superlattice materials under low‐energy ion irradiation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The mixing roughness information depth model is frequently used for the quantification of sputter depth profiles. In general, the solution of the convolution integral for any kind of in‐depth distributions is achieved by numerical methods. For a thin delta layer, an analytical depth resolution function is presented, which enables a simple and user‐friendly quantification of measured delta layer profiles in AES, XPS and SIMS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Depth profiling of an organic reference sample consisting of Irganox 3114 layers of 3 nm thickness at depths of 51.5, 104.5, 207.6 and 310.7 nm inside a 412 nm thick Irganox 1010 matrix evaporated on a Si substrate has been studied using the conventional Cs+ and O2+ as sputter ion beams and Bi+ as the primary ion for analysis in a dual beam time‐of‐flight secondary ion mass spectrometer. The work is an extension of the Versailles Project on Advanced Materials and Standards project on depth profiling of organic multilayer materials. Cs+ ions were used at energies of 500 eV, 1.0 keV and 2.0 keV and the O2+ ions were used at energies of 500 eV and 1.0 keV. All four Irganox 3114 layers were identified clearly in the depth profile using low mass secondary ions. The depth profile data were fitted to the empirical expression of Dowsett function and these fits are reported along with the full width at half maxima to represent the useful resolution for all the four delta layers detected. The data show that, of the conditions used in these experiments, an energy of 500 eV for both Cs+ beam and O2+ beam provides the most useful depth profiles. The sputter yield volume per ion calculated from the slope of depth versus ion dose matches well with earlier reported data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
An indirect, compositional depth profiling of an inorganic multilayer system using a helium low temperature plasma (LTP) containing 0.2% (v/v) SF6 was evaluated. A model multilayer system consisting of four 10 nm layers of silicon separated by four 50 nm layers of tungsten was plasma‐etched for (10, 20, 30) s at substrate temperatures of (50, 75, and 100) °C to obtain crater walls with exposed silicon layers that were then visualized using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) to determine plasma‐etching conditions that produced optimum depth resolutions. At a substrate temperature of 100 °C and an etch time of 10 s, the FWHM of the second, third, and fourth Si layers were (6.4, 10.9, and 12.5) nm, respectively, while the 1/e decay lengths were (2.5, 3.7, and 3.9) nm, matching those obtained from a SIMS depth profile. Though artifacts remain that contribute to degraded depth resolutions, a few experimental parameters have been identified that could be used to reduce their contributions. Further studies are needed, but as long as the artifacts can be controlled, plasma etching was found to be an effective method for preparing samples for compositional depth profiling of both organic and inorganic films, which could pave the way for an indirect depth profile analysis of inorganic–organic hybrid structures that have recently evolved into innovative next‐generation materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Auger electron spectroscopy (AES) sputter depth profiling of an ISO reference material of the GaAs/AlAs superlattice was investigated using low‐energy Ar+ ions. Although a high depth resolution of ~1.0 nm was obtained at the GaAs/AlAs interface under 100 eV Ar+ ion irradiation, deterioration of the depth resolution was observed at the AlAs/GaAs interface. The Auger peak profile revealed that the enrichment of Al due to preferential sputtering occurred during sputter etching of the AlAs layer only under 100 eV Ar+ ion irradiation. In addition, a significant difference in the etching rates between the AlAs and GaAs layers was observed for low‐energy ion irradiation. Deterioration of the depth resolution under 100 eV Ar+ ion irradiation is attributed to the preferential sputtering and the difference in the etching rate. The present results suggest that the effects induced by the preferential sputtering and the significant difference in the etching rate should be taken into account to optimize ion etching conditions using the GaAs/AlAs reference material under low‐energy ion irradiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号