首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray photoemission electron microscopy (XPEEM) using synchrotron radiation illumination has been used to study the adsorption of human serum albumin (HSA) onto a phase segregated polystyrene/polymethylmethacrylate (PS/PMMA) blend surface from solutions of five different pH values. The absolute coverage of albumin on each of three chemically distinct components of the surface, PS domains, PMMA domains, and the interface between the domains, was determined from a quantitative analysis of C 1s image sequences. At all pH values, the preferred adsorption site is the interface. At neutral pH (7.0), albumin showed a slight preference for PS regions relative to PMMA. At strongly acidic pH (2.0) and strongly basic pH (10.0), similar amounts of albumin adsorb on the PS and PMMA regions. However, at pH 4.0, the amount of albumin adsorbed on PMMA domains is approximately 1.6 times greater than that on PS domains, while at pH 8.6 the amount of albumin adsorbed on PMMA is one-half that adsorbed on PS domains. The pH dependence of the site preference is rationalized in terms of the known changes of albumin conformation with pH [Peters, T., Jr. All About Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: New York, 1995]. We infer from our results that the site preference of albumin adsorption on PS/PMMA blends is related mainly to changes in hydrophobic interactions, which are driven by pH-dependent electrostatic effects, that is, changes to the protein surface structure as the charge on the protein changes. The results provide insight into changes in the secondary structure of albumin in acid and basic media.  相似文献   

2.
Hartono D  Liu Y  Tan PL  Then XY  Yung LY  Lim KM 《Lab on a chip》2011,11(23):4072-4080
Measurements of mechanical properties of biological cells are of great importance because changes in these properties can be strongly associated with the progression of cell differentiation and cell diseases. Although state of the art methods, such as atomic force microscopy, optical tweezers and micropipette aspiration, have been widely used to measure the mechanical properties of biological cells, all these methods involve direct contact with the cell and the measurements could be affected by the contact or any local deformation. In addition, all these methods typically deduced the Young's modulus of the cells based on their measurements. Herein, we report a new method for fast and direct measurement of the compressibility or bulk modulus of various cell lines on a microchip. In this method, the whole cell is exposed to acoustic radiation force without any direct contact. The method exploits the formation of an acoustic standing wave within a straight microchannel. When the polystyrene beads and cells are introduced into the channel, the acoustic radiation force moves them to the acoustic pressure node and the movement speed is dependent on the compressibility. By fitting the experimental and theoretical trajectories of the beads and the cells, the compressibility of the cells can be obtained. We find that the compressibility of various cancer cells (MCF-7: 4.22 ± 0.19 × 10(-10) Pa(-1), HEPG2: 4.28 ± 0.12 × 10(-10) Pa(-1), HT-29: 4.04 ± 0.16 × 10(-10) Pa(-1)) is higher than that of normal breast cells (3.77 ± 0.09 × 10(-10) Pa(-1)) and fibroblast cells (3.78 ± 0.17 × 10(-10) Pa(-1)). This work demonstrates a novel acoustic-based method for on-chip measurements of cell compressibility, complementing existing methods for measuring the mechanical properties of biological cells.  相似文献   

3.

The behavior of bovine serum albumin as a function of the pH of the medium and the presence in the test systems of symmetrical and asymmetrical hydrophobic porphyrins was investigated. It was established that 4-[(tert-butoxycarbonylamino)acetamido]phenyl group favors stronger protein binding to porphyrin, and this effect enhances in an alkaline medium. Solubilization of protein by porphyrins leads to the fact that the particles are spherical in solution, the hydrodynamic radius of the protein globule reduced in an alkaline medium but in neutral medium, in contrast, increases. By IR spectroscopy it was shown that beta-structuring and the proportion of disordered coils of the polypeptide chain in an alkaline medium increases, because the complexability of the protein towards porphyrin is changes.

  相似文献   

4.
The interaction of 2,2,2-trifluoroethanol (TFE) with concanavalin A has been investigated by using a combination of differential scanning calorimetry, isothermal titration calorimetry (ITC), circular dichroism (CD), and fluorescence spectroscopy at pH 2.5 and 5.2. All of the calorimetric transitions at both the pH values were found to be irreversible. In the presence of 4 mol kg(-1) TFE at pH 2.5, concanavalin A is observed to be in a partially folded state with significant loss of native tertiary structure. The loss of specific side chain interactions in the transition from native to the TFE-induced partially folded state is demonstrated by the loss of cooperative thermal transition and reduction of the CD bands in the aromatic region. Acrylamide quenching, 8-anilinonaphthalene sulfonate (ANS) binding, and energy transfer also suggest that in the presence of 4 mol kg(-1) TFE at pH 2.5 concanavalin A is in a molten globule state. ITC has been used for the first time to characterize the energetics of ANS binding to the molten globule state. ITC results indicate that the binding of ANS to the molten globule state and acid-induced state at pH 2.5 displays heterogeneity with two classes of non-interacting binding sites. The results provide insights into the role of hydrophobic and electrostatic interactions in the binding of ANS to concanavalin A. The results also demonstrate that ITC can be used to characterize the partially folded states of the protein both qualitatively and quantitatively.  相似文献   

5.
N-butylimidazolium functionalized strongly basic anion exchange resin with Cl(-) anion (MCl) was prepared by anchoring N-butylimidazole onto chloromethylated macroporous styrene-divinylbenzene (St-DVB) copolymer. The adsorption performances of phenol on MCl were studied using the batch technique at acidic and alkaline pH. The studies showed that phenol can be effectively removed at both acidic and alkaline pH. The maximum adsorption was achieved at about pH 11. The maximum adsorption capacities of phenol on MCl at pH 6.6 and 11.2 were 80.2 and 92.9 mg/g, respectively. The adsorption mechanism was mainly molecular adsorption at acidic pH and anion exchange at alkaline pH. The adsorption of phenol was hindered by the presence of Cl(-) and SO(4)(2-) at alkaline pH due to the competitive anion exchange reaction. The adsorption of molecular phenol species on MCl at acidic pH was exothermic, and the anion exchange of phenolate species by MCl at alkaline pH was endothermic. Desorption of phenol from loaded adsorbent was achieved by using 0.5 mol/L NaOH and 0.5 mol/L NaCl mixed solution. MCl can simultaneously remove phenol and Cr(VI) from their mixtures, which would be of practical value in actual industrial wastewater treatment.  相似文献   

6.
核固红及稀土核固红极谱行为的研究   总被引:2,自引:0,他引:2  
在由酸性至碱性的水溶液中均获得了核固红的极谱吸附波, 证实在酸性底液中核固红在汞电极上的吸附符合Frumkin等温式. 对pH由7至11的碱性底液中核固红电还原的ECE机制作了研究, 还获得并研究了在pH11附近, 乙二胺-氯化钾底液中的稀土-核固红体系的极谱络合吸附波。  相似文献   

7.
The binding of 1-anilino-8-naphthalene-sulfonic acid (ANS) to various globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESI-MS). Maximal ANS binding is observed in the pH range 3-5. As many as seven species of dye-bound complexes are detected for myoglobin. Similar studies were carried out with cytochrome c, carbonic anhydrase, triosephosphate isomerase, lysozyme, alpha-lactalbumin, and bovine pancreatic trypsin inhibitor (BPTI). Strong ANS binding was observed wherever molten globule states were postulated in solution. ANS binding is not observed for lysozyme and BPTI, which have tightly folded structures in the native form. Alpha-lactalbumin, which is structurally related to lysozyme but forms a molten globule at acidic pH, exhibited ANS binding. Reduction of disulfide bonds in these proteins leads to the detection of ANS binding even at neutral pH. Binding was suppressed at very low pH (<2.5), presumably due to neutralization of the charge on the sulfonate moiety. The distribution of the relative intensities of the protein bound ANS species varies with the charge state, suggesting heterogeneity of gas phase conformations. The binding strength of these complexes was qualitatively estimated by dissociating them using enhanced nozzle skimmer potentials. The skimmer voltages also affected the lower and higher charge states of these complexes in a different manner.  相似文献   

8.
A sensitive method for the simultaneous determination of chromium(III) (Cr3+) and chromium(VI) (CrO4(2-)) using in-capillary reaction, capillary electrophoresis (CE) separation and chemiluminescence (CL) detection was developed. The chemiluminescence reaction was based on luminol oxidation by hydrogen peroxide in basic aqueous solution catalyzed by Cr3+ ion followed by capillary electrophoresis separation. Based on in-capillary reduction, chromium(VI) can be reduced by acidic sodium hydrogensulfite to form chromium(III) while the sample is running through the capillary. Before the electrophoresis procedure, the sample (Cr3+ and CrO4(2-)), buffer and acidic sodium hydrogensulfite solution segments were injected in that order into the capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ ions migrate to the cathode, while CrO4(2-) ions, moving in the opposite direction toward the anode, react with acidic sodium hydrogensulfite which results in the formation of Cr3+ ions. Because of the migration time difference of both Cr3+ ions, Cr(III) and Cr(VI) could be separated. The running buffer was composed of 0.02 mol l(-1) acetate buffer (pH 4.7) with 1 x 10(-3) mol l(-1) EDTA. Parameters affecting CE-CL separation and detection, such as reductant (sodium hydrogensulfite) concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, were optimized. The limits of detection (LODs) of Cr(III) and Cr(VI) were 6 x 10(-13) and 8 x 10(-12) mol l(-1) (S/N=3), respectively. The mass LODs for Cr(III) and Cr(VI) were 1.2 x 10(-20) mol (12 zmol) and 3.8 x 10(-19) mol (380 zmol), respectively.  相似文献   

9.
以二烯单酮结构为荧光团,酚羟基为脱质子基团,合成了一种具有双重功能的可视化pH荧光分子探针.pH滴定实验表明,探针的紫外吸收和荧光光谱均对溶液的pH值有很强的依赖性,当体系溶液由酸性变为碱性时,探针的紫外吸收光谱发生明显的红移,并伴有溶液颜色的显著变化;荧光光谱强度在酸性条件下随pH值的变化不大,而在碱性条件下随pH值...  相似文献   

10.
The well-established ability of copolymer micelles to encapsulate and release hydrophobic molecules has been investigated following their adsorption onto silica particles. Here, a pH-responsive copolymer, poly(2-(dimethylamino)ethyl methacrylate)- b-poly(2-(diethylamino)ethyl methacrylate) (PDMA(106)- b-PDEA(25)), has been used to study the formation and dissociation of adsorbed micelles through pH variation. This copolymer behaves as free unimers in aqueous solutions below pH 8 and forms micelles 29 nm in hydrodynamic diameter above this pH. Encapsulation and release of a model hydrophobic compound (pyrene) by in situ adjustment of the solution pH has been compared for both free and adsorbed micelles using fluorescence spectrophotometry, epifluorescence microscopy, and zeta potential measurements. At basic pH values, pyrene is solubilized within the cores of micelles adsorbed on silica particles: addition of acid leads to micelle dissociation and release of the pyrene into the bulk aqueous solution. Micelle adsorption does not appear to hinder the extent of pyrene uptake/release. Moreover, this pH-responsive behavior is both reversible and reproducible over multiple pH cycles.  相似文献   

11.
A method for coating capillaries for capillary electrophoresis with chemically bonded polydimethylacrylamide has been developed, and the properties of the capillaries have been evaluated. The coated capillaries provided high separation efficiency, 12 x 10(5) theoretical plates/m was obtained for cytochrome c. The electroosmotic flow at pH 8.0 was 10 x 10(-10) to 6 x 10(-10) m2 V(-1) s(-1). The coated capillaries were quite stable at high pH. At least 150 runs could be done at pH 10 without appreciable performance deterioration. The excellent performance of the coated capillaries was illustrated by separation of basic proteins, acidic proteins, 9-fluorenylmethyl chloroformate-derivatized neurotransmitter amino acids, peptide reference mixtures and peptides digested from a bacteria protein.  相似文献   

12.
利用荧光素(Fluorescein)对罗丹明6G(Rhodamine 6G)进行修饰,得到荧光分子探针R6G-Flu杂化物.此探针可特异性识别Al3+,检出限可低至10-8 mol/L级;向含有探针分子的溶液中加入Al3+后,溶液的颜色由无色变为粉色,并且在紫外灯下发出绿色荧光,可实现肉眼对10 μmol/L Al3+的定性检测.考察了不同pH值下R6G-Flu的荧光性质. 结果表明,此探针还可用于酸性范围(pH 3.00~6.00)和碱性范围(pH 8.00~10.50)内pH值的精确检测.实验结果表明,R6G-Flu是一种可用于Al3+和pH值检测的双功能荧光分子探针.  相似文献   

13.
The self-exchange rate constant (25 degrees C) for parsley plastocyanin is 5.0 x 10(4) M-1 s-1 at pH* 7.5 (I = 0.10 M). This value is quite large for a higher plant plastocyanin and can be attributed to a diminished upper acidic patch in this protein. The self-exchange rate constant is almost independent of pH* in the range 7.5-5.6, with a value (25 degrees C) of 5.6 x 10(4) M-1 s-1 at pH* 5.6 (I = 0.10 M). At this pH*, the ligand His87 is protonated in approximately 50% of the reduced protein molecules (pKa* 5.6), and this would be expected to hinder electron transfer between the two oxidation states. However, this effect is counterbalanced by the enhanced association of two parsley plastocyanins at lower pH* due to the partial protonation of the acidic patch.  相似文献   

14.
A novel single-chain surfactant with multi-amine headgroups, bis(amidoethyl-carbamoylethyl) octadecylamine (C18N3), was synthesized. Electronmicrographic study showed that in aqueous solution C18N3 formed small micelles (10-20 nm in diameter) at pH 2.0 and changed into much larger globule vesicles sized about 0.6-2.0 microm in diameter at pH 6.8. At pH 12.0 vesicles changed to a much larger continued lyotropic lamella structure. At pH = 2, the surface tension (gamma)-concentration (C) curve at pH 2 was an ordinary one, having one critical micelle concentration at 2.9 x 10(-3) mol L(-1) at relatively high surface tension (52 mN m(-1)). However, two unique transition points were observed in the gamma-C plot at pH = 6.8 and 10.5, showing higher surface activity that is believed to be associated with the micelle-bilayer structure transition. The protonation degree pKa's of the three amine headgroups were found to be 6.6, 10.6, and 10.9, respectively, indicating that a complete protonation state of the headgroups occurred at pH 2.0, which is consistent with the apparent surface areas of headgroup calculated according to Gibbs adsorption isotherm. Variation of sizes and morphologies of C18N3 in aqueous solution at different pH values suggest that our synthetic surfactant may have great potential applications as a template in fabricating drug delivery, biosensors, and biomolecular devices.  相似文献   

15.
Shave E  Vigh G 《Electrophoresis》2007,28(4):587-594
The pH transients that occur during isoelectric trapping separations as a result of the removal of nonampholytic ionic components have been re-examined. Salts containing strong electrolyte anions and cations, both with equal and dissimilar mobilities, have been studied using anodic and cathodic buffering membranes whose pH values were both equidistant and nonequidistant from pH 7. The direction and magnitude of the pH transient (acidic or basic) was found to depend on both the mobilities of the anion and cation (mu(anion)/mu(cation)) and the pH difference between pH 7 and the pH of the buffering membranes (|pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)|). When |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)| = 1, mu(anion)/mu(cation)<1 leads to an acidic pH transient, mu(anion)/mu(cation) = 1 eliminates the pH transient and mu(anion)/mu(cation)>1 leads to a basic pH transient. When mu(anion)/mu(cation) = 1, |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)|<1 leads to a basic pH transient, |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)| = 1 eliminates the pH transient and |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)|>1 leads to an acidic pH transient. By selecting appropriate anodic and cathodic buffering membranes to adjust the |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)| value, pH transients caused by dissimilar anion and cation mobilities can be avoided.  相似文献   

16.
A new biosorbent, methylated yeast (MeYE), was prepared for the adsorptive separation of proteins from aqueous solutions. Yeast was methylated in a 0.1 M HCl methyl alcohol solution at room temperature. About 80% of the carboxylic groups of yeast could be methylated within 9 h. The adsorption of egg albumin onto MeYE was studied to evaluate the protein adsorption ability of MeYE. At near neutral pH, egg albumin was scarcely adsorbed onto unmethylated yeast and the adsorbed amount of egg albumin increased with increasing methylation degree. The amount of egg albumin adsorbed onto MeYE increased with increasing pH from 4 to 7 and steeply decreased above pH 7. The Langmuir isotherm was applied to determine the apparent adsorption constant and the saturated adsorbed amount of egg albumin on MeYE. Both the apparent adsorption constant and the saturated adsorbed amount increased with the degree of methylation. The saturated adsorbed amount of egg albumin onto MeYE having methylation degree 77% was 8.41 x 10(-6) mol g(-1) or 0.378 gg(-1) at near neutral pH.  相似文献   

17.
Complex analyses of polar compounds, especially basic ones, require more selective stationary phases. The present paper describes a stationary phase prepared by thermal immobilization of poly(methyltetradecylsiloxane) onto chromatographic silica (PMTDS-SiO(2)). This stationary phase presents hydrophobic and ion-exchange interactions that confer both high retention and unique selectivities for basic solutes. The influence of ion-exchange interactions is confirmed by the increase in retention factors of basic solutes when the mobile-phase pH changes from acidic to neutral and by the decrease in retention factors when the mobile-phase pH changes from neutral to alkaline. The ion-exchange properties of the stationary phase are enriched in neutral mobile phase (pH 7-7.5) using soft Lewis bases such as tricine and tris as buffers but are suppressed in both acidic (pH 2.5-6) and highly alkaline mobile phases (pH≤10). Increasing both temperature and flow rate permits more rapid separations while maintaining the selectivity. The stability of the stationary phase is evaluated with acid, neutral and alkaline mobile phases.  相似文献   

18.
The gas-phase acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine have been examined using both theoretical (B3LYP/6-31+G*) and experimental (bracketing, Cooks kinetic) methods. This paper represents a comprehensive examination of multiple acidic sites of thymine and cytosine and of the acidity and proton affinity of thymine, cytosine, and 1-methyl cytosine. Thymine exists as the most stable "canonical" tautomer in the gas phase, with a DeltaH(acid) of 335 +/- 4 kcal mol(-1) (DeltaG(acid) = 328 +/- 4 kcal mol(-1)) for the more acidic N1-H. The acidity of the less acidic N3-H site has not, heretofore, been measured; we bracket a DeltaH(acid) value of 346 +/- 3 kcal mol(-1) (DeltaG(acid) = 339 +/- 3 kcal mol(-1)). The proton affinity (PA = DeltaH) of thymine is measured to be 211 +/- 3 kcal mol(-1) (GB = DeltaG = 203 +/- 3 kcal mol(-1)). Cytosine is known to have several stable tautomers in the gas phase in contrast to in solution, where the canonical tautomer predominates. Using bracketing methods in an FTMS, we measure a DeltaH(acid) for the more acidic site of 342 +/- 3 kcal mol(-1) (DeltaG(acid) = 335 +/- 3 kcal mol(-1)). The DeltaH(acid) of the less acidic site, previously unknown, is 352 +/- 4 kcal mol(-1) (345 +/- 4 kcal mol(-1)). The proton affinity is 228 +/- 3 kcal mol(-1) (GB = 220 +/- 3 kcal mol(-1)). Comparison of these values to calculations indicates that we most likely have a mixture of the canonical tautomer and two enol tautomers and possibly an imine tautomer under our conditions in the gas phase. We also measure the acidity and proton affinity of cytosine using the extended Cooks kinetic method. We form the proton-bound dimers via electrospray of an aqueous solution, which favors cytosine in the canonical form. The acidity of cytosine using this method is DeltaH(acid) = 343 +/- 3 kcal mol(-1), PA = 227 +/- 3 kcal mol(-1). We also examined 1-methyl cytosine, which has fewer accessible tautomers than cytosine. We measure a DeltaH(acid) of 349 +/- 3 kcal mol(-1) (DeltaG(acid) = 342 +/- 3 kcal mol(-1)) and a PA of 230 +/- 3 kcal mol(-1) (GB = 223 +/- 3 kcal mol(-1)). Our ultimate goal is to understand the intrinsic reactivity of nucleobases; gas-phase acidic and basic properties are of interest for chemical reasons and also possibly for biological purposes because biological media can be quite nonpolar.  相似文献   

19.
Fluvastatin is a member of the HMG-CoA reductase inhibitor family of drugs, commonly referred to as statins. It is generally known that, under physiological conditions, statins are susceptible to pH-dependent interconversion between their active (hydroxy acid) and inactive (lactone) forms. The mechanism of this interconversion, under both acidic and basic conditions, was investigated theoretically using the density functional theory (DFT) method. Regardless of the conditions, the lactone form was always higher in energy by 6-19 kcal mol(-1). However, under basic conditions, the activation barrier for the hydrolysis was significantly lower (9 kcal mol(-1)) than for the reverse reaction (28 kcal mol(-1)), making the lactone form unstable. The activation barriers under acidic conditions were of comparable height in both directions (22 and 28 kcal mol(-1)), making the occurrence of both forms equally probable. Due to the high activation barrier (>40 kcal mol(-1)), a one-step, direct interconversion between the two forms turned out to be unfavourable. Moreover, the potential energy surface of fluvastatin was briefly inspected, revealing relatively small energetic differences (<5 kcal mol(-1)) between the key conformers.  相似文献   

20.
Methacrylate-based monolithic columns with electroosmotic flow (EOF) or very weak EOF are prepared by in situ copolymerization in the presence of a porogen in fused-silica capillaries pretreated with a bifunctional reagent. Satisfactory separations of acidic and basic compounds on the column with EOF at either low or high pH are achieved, respectively. With sulfonic groups as dissociation functionalities, sufficient EOF mobility still remains as high as 1.74 x 10(-4) cm2 s(-1) V(-1) at low pH. Under this condition, seven acidic compounds are readily separated within 5.7 min. Moreover, at high pH, the peak shape of basic compounds is satisfactory without addition of any masking amines into running mobile phase since the secondary interaction between the basic compounds and the monolithic stationary phase are minimized at high pH. Reversed-phase mechanism for both acidic and basic compounds is observed under investigated separation conditions. In addition, possibilities of acidic and basic compound separations on a monolithic column with extremely low EOF are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号