首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shraim A  Chiswell B  Olszowy H 《The Analyst》2000,125(5):949-953
Simple and inexpensive methods for the speciation of arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in environmental water samples were developed. In these methods a hydride generation-atomic absorption spectrometry (HG-AAS) technique was employed and perchloric acid (as a reaction medium), L-cysteine (as a pre-reducing agent for a certain contact time between its addition and analysis) and sodium tetrahydroborate(III) (NaBH4, as a reducing agent) were used. The use of L-cysteine greatly enhances the absorption signals of all four arsenic species at low acid concentration (0.001-0.04 M). The methods developed for the determination of total arsenic and total inorganic arsenic and speciation of the four arsenic species in environmental water samples are as follows. (i) DMA: 0.005 M acid and 0.04% NaBH4 in the absence of L-cysteine. DMA can also be speciated in the presence of L-cysteine as follows: 2 M acid, 2.5% L-cysteine after a contact time of approximately 5 min and 0.6% NaBH4. (ii) As(III): 5 M acid and 0.08% NaBH4 in the absence of L-cysteine. (iii) Total inorganic arsenic (As(III) + As(V)]: 8 M acid and 0.6% NaBH4 in the absence of L-cysteine. (iv) Total arsenic: 0.01 M acid, 5% L-cysteine after a contact time of 5 min and 2% NaBH4. (v) MMA: 8 M acid, 3% L-cysteine after a contact time of 50 min and 0.6% NaBH4. (vi) As(V): by difference. Detection limits and recoveries of added spikes for all analyses were found to be 0.5-1.7 ppb and 90-112% respectively.  相似文献   

2.
A method has been described for the determination of arsenic species (arsenite and arsenate) by hydride generation-atomic fluorescence spectrometry (HG-AFS). The experimental conditions that influence the fluorescence intensity and the reduction of arsenic were investigated and optimized, and the influences from foreign ions and their elimination were studied. The detection limit was found to be 79.7 ng L(-1). The proposed method was applied to the determination of arsenic species in water leachate of traditional Chinese medicines with a recovery range of 91.1-109.5%.  相似文献   

3.
Summary Hydrides evolved in the mixing coil were stored at a pressure of up to 0.4 atm in a separating funnel and swept into an electrically heated furnace. This process caused effective reduction of the hydride forming elements and minimized the consumption of the reagents. A decrease in the sensitivity by deterioration of the furnace was not observed, because traces of water were introduced into it. The sensitivities at 1% absorption for As(V) and Se(IV) were 0.2 ppb and 0.6 ppb, respectively. Accuracies checked with biological standard reference materials were within the certified values. The proposed method was applied for the determination of arsenic and selenium in river water.
Bestimmung von Arsen- und Selenspuren durch AAS mit Hydriderzeugung
Zusammenfassung Die in der Mischwendel erzeugten Hydride werden bei einem Druck bis zu 0,4 atm in einem Scheidetrichter gesammelt und von dort in den elektrisch beheizten Ofen geleitet. Durch dieses Verfahren wird eine wirkungsvolle Reduktion der hydridbildenden Elemente erreicht und der Reagensverbrauch eingeschränkt. Eine Abnahme der Empfindlichkeit durch Beeinträchtigung des Ofens wurde nicht beobachtet, da Wasserspuren in den Ofen gelangten. Die Empfindlichkeit bei 1% Absorption betrug 0,2 ppb für As(V) und 0,6 ppb für Se(IV). Die Richtigkeit der Ergebnisse wurde mit Hilfe von Standard-Referenzmaterialien nachgeprüft. Die Resultate lagen im Bereich der zertifizierten Werte. Das vorgeschlagene Verfahren wurde zur Arsen- und Selenbestimmung in Flußwasser angewendet.
  相似文献   

4.
A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG–AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l−1 H2SO4. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml−1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml−1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml−1 As(III) and 2.5% for 20 ng ml−1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.  相似文献   

5.
In this work, a method for direct lead determination in wine, without wet or dry sample attack, by lead hydride generation-atomic absorption spectrometry, is proposed. To do this, ammonium persulphate is employed as the oxidizing agent, and sodium borohydride is used as the reducing agent. The pH value must be 1.0.Lead content in wine is determined by the analyte addition technique, and the result is compared with those obtained by three different methods.  相似文献   

6.
Anion-exchange HPLC has been combined with hydride generation – atomic absorption spectrometry (HG-AAS) for the routine speciation of arsenite, arsenate, monomethylarsenic acid and dimethylarsinic acid. The sensitivity of the AAS-detection was increased by a post-column reaction system to achieve complete formation of volatile arsines from the methylated species and arsenate. The system allows the quantitative determination of 0.5 g/l of each arsenic compound in water samples. The stability of synthetical and natural water containing arsenic at trace levels was investigated. To preserve stored water samples, a method for quantitative separation of arsenate at high pH-values with the basic anion-exchange resin Dowex 1×8 was developed.  相似文献   

7.
Anion-exchange HPLC has been combined with hydride generation - atomic absorption spectrometry (HG-AAS) for the routine speciation of arsenite, arsenate, monomethylarsenic acid and dimethylarsinic acid. The sensitivity of the AAS-detection was increased by a post-column reaction system to achieve complete formation of volatile arsines from the methylated species and arsenate. The system allows the quantitative determination of 0.5 microg/l of each arsenic compound in water samples. The stability of synthetical and natural water containing arsenic at trace levels was investigated. To preserve stored water samples, a method for quantitative separation of arsenate at high pH-values with the basic anion-exchange resin Dowex 1x8 was developed.  相似文献   

8.
Arsenic present at 1 microg L(-1) concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and nonhydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

9.
Arsenic present at 1 μg L–1 concentrations in seawater can exist as the following species: As(III), As(V), monomethylarsenic, dimethylarsenic and unknown organic compounds. The potential of the continuous flow injection hydride generation technique coupled to atomic absorption spectrometry (AAS) was investigated for the speciation of these major arsenic species in seawater. Two different techniques were used. After hydride generation and collection in a graphite tube coated with iridium, arsenic was determined by AAS. By selecting different experimental hydride generation conditions, it was possible to determine As(III), total arsenic, hydride reactive arsenic and by difference non-hydride reactive arsenic. On the other hand, by cryogenically trapping hydride reactive species on a chromatographic phase, followed by their sequential release and AAS in a heated quartz cell, inorganic As, MMA and DMA could be determined. By combining these two techniques, an experimental protocol for the speciation of As(III), As(V), MMA, DMA and non-hydride reactive arsenic species in seawater was proposed. The method was applied to seawater sampled at a Mediterranean site and at an Atlantic coastal site. Evidence for the biotransformation of arsenic in seawater was clearly shown.  相似文献   

10.
氢化物发生-原子荧光光谱法测定中草药中的微量砷   总被引:8,自引:0,他引:8  
研究了氢化物发生-原子荧光光谱法测定中草药中微量砷的方法的最佳条件,以50g/L硫脲 50g/L抗坏血酸为预还原抗干扰剂,测定了10种中草药药品中的砷,方法检出限(3σ)为0.103μg/L,相对标准偏差为1.6%-3.2%,回收率为89.2%-112%。  相似文献   

11.
建立了测定铝合金中痕量砷HG-AFS分析方法.采用王水溶解样品,在硫脲和抗坏血酸的存在下将As(Ⅴ)还原为As(Ⅲ),以KBH4溶液(20g/L)作为还原剂,HCl(5+95)溶液作为载流,用原子荧光光谱法测定样品中痕量砷.在选定的实验务件下,方法的线性范围为0.05~40μg/L,线性回归方程为,If=108.17+272.49ρ(μg/L),相关系数r=0.9997,检出限0.019μg/L.并与ICP-AES法进行了对照试验.  相似文献   

12.
Summary The total tin in river water was determined by hydride generation-atomic absorption spectrometry in sulphuric acid medium. The water was concentrated with nitric and sulphuric acids. Interference from copper and iron was eliminated by extracting copper with a carbon tetrachloride solution of zinc dibenzyldithiocarbamate and by complexing iron with 1,10-phenanthroline in solution. The acidities of the sample solutions were checked by weighing the residue in the flasks during the acid digestion so that the acidities of the sample solutions became approximately equal to those of the calibration solutions. When a 1,000 mg/l tin(IV) solution was diluted with water, the hydrolysed tin could not be determined entirely as the total tin by acidification with sulphuric acid, but it could be recovered completely by digestion even after 5 days. Thus digestion is essential when determining the total tin in water.  相似文献   

13.
运用碱式消解法对样品进行前处理,采用氢化物发生-原子荧光光谱数学计算法测定大气颗粒物中As(Ⅲ)和As(Ⅴ)的含量。探讨了还原剂用量、酸介质及其酸度、载气及屏蔽气流量和观测高度等对荧光强度的影响,分析了共存离子对砷测定的干扰。在选定的最佳条件下,得到检出限为0.34μg/L,加标回收率为87.8%~108.2%。方法可用于测定大气颗粒物中不同形态的砷。  相似文献   

14.
A software-controlled time-based multisyringe flow-injection system for total inorganic arsenic determination by hydride generation atomic fluorescence spectrometry (HGAFS) has been developed. By using a multisyringe burette coupled with one multiport selection valve, the time-based injection provides precise known volumes of sample, a reducing sodium tetrahydroborate solution and a pre-reducing solution which are dispensed into a gas-liquid separation cell. An argon flow delivers the arsine into the flame of an atomic fluorescence spectrometer. A hydrogen flow has been used to support the flame.Linear calibration graphs for arsenic concentrations between 0.25 and 12 μg l−1 were obtained. The detection limit of the proposed technique (3σb/S) was 0.07 μg l−1. A sample throughput of 36 samples/h (108 injections) has been achieved. The proposed technique has been validated by means of reference solid and water materials with good agreement with the certified values. This method was compared with those reported in previous sequential injection analysis (SIA) and flow-injection analysis (FIA) systems. The proposed method offers a number of advantages in front the usual AFS applications, which are mainly a higher sampling frequency and a significant reduction in reagent consumption.  相似文献   

15.
A simple, reliable, trace determination of selenomethionine (Semet) based on a direct hydride generation atomic absorption spectrometric method was developed using sodium tetrahydroborate (0.3% in 0.2% NaOH) and hydrochloric acid (3 M). The method excluded any chemical pretreatment prior to hydride generation (HG). The optimized HG system was successfully coupled with the HPLC system. The detection limit (3σ of blank; n=5), reproducibility (R.S.D. of three successive analyses/day, performed on three different days), and repeatability (R.S.D. of three successive analyses) of the method were 1.08 ng ml−1, 9.8% for 9.04 ng ml−1 and 2.1–9.5% for 30.0–1.27 ng ml−1 Semet as Se (standards prepared in Milli-Q water). Calibration graph was linear up to 30 ng ml−1. This HPLC-HG-AAS method is very promising and successfully determined Semet (spiked) in human urine.  相似文献   

16.
17.
研究了氢化物发生-原子荧光光谱法测定高纯铟中微量As、Sb元素的条件,选择了适宜的反应条件以及仪器的最佳工作条件,考察了铟基体对被测元素的干扰,采用基体匹配的方法消除干扰,建立了氢化物发生-原子荧光光谱法测定高纯铟中微量的As、Sb的分析方法。As、Sb的检出限分别为0.18和0.28 ng/mL,测定下限为1.2×10-5和1.9×10-5,相对标准偏差分别为1.9%和1.7%,回收率为97.4%和103%,适用于5~6 N高纯铟中微量As、Sb的测定。  相似文献   

18.
Practical procedures are given for determination of arsenic(III) and (V) in hydrofluoric acid by means of hydride generation and atomic absorption spectrometry. Arsenic(III) can be determined by direct generation of arsine with sodium borohydride in hydrochloric/hydrofluoric acid medium, arsenic(V) being only slightly reduced under the conditions used. For its determination, arsenic(V) has to be prereduced with potassium iodide, and even then its reduction to arsenic(III) and then arsine is far from complete. It is possible to determine it in presence of arsenic(III) by a difference method, but this is recommended only if the As(V)/As(III) ratio is greater than 1. Total arsenic can be determined after oxidation of As(III) and evaporation of most of the hydrofluoric acid. The limit of determination is 5 g/l for arsenic(III) and 0.25 g/l for total arsenic; the relative standard deviation is about 10%.  相似文献   

19.
Le XC  Cullen WR  Reimer KJ 《Talanta》1994,41(4):495-502
An arsenic specific detection system utilizing on-line microwave digestion and hydride generation atomic absorption spectrometry (MD/HGAAS) is described for arsenic speciation by using high performance liquid chromatography (HPLC). Both ion exchange chromatography and ion pair chromatography have been studied for the separation of arsenite, arsenate, monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), and arsenobetaine (AB). When the commonly used mobile phases, phosphate and carbonate buffers at pH 7.5, are used on an anion exchange column, arsenite and AB co-elute. However, selective determination of these two arsenic compounds can be achieved by using the new detection system. Partial separation between arsenite and AB can be achieved by increasing the mobile phase pH to 10.3 and by using a polymer based anion exchange column. The detection limit obtained by using anion exchange chromatography with MD/HGAAS detection is approximately 10 ng/ml (or 200 pg for a 20-mul sample injection) for arsenite, DMAA and AB, 15 ng/ml (or 300 pg) for MMAA, and 20 ng/ml (or 400 pg) for arsenate. Complete separation of the five arsenic compounds is achieved on a reversed phase C18 column by using sodium heptanesulfonate as ion pair reagent. Comparable resolution between chromatographic peaks is obtained by using MD/HGAAS detection and inductively coupled plasma mass spectrometry (ICPMS) detection.  相似文献   

20.
建立了离子色谱-氢化物发生原子荧光光谱联用分离4种常见有毒砷化合物的方法. 二者通过内径0.25 mm的PEEK管直接相连. 实验对影响分离度和测定灵敏度的参数进行了优化. 在优化条件下, 质量浓度均为50 μg/L的4种砷化合物混合标准溶液平行7次进样, 得到DMA、 As(Ⅲ)、 MMA和As(Ⅴ)的色谱峰面积的相对标准偏差(RSD)为2.8~3.0%. 250 μL进样的线性范围为5~1000 μg/L, 检出限为0.8~1.2 μg/L (三倍基线噪音峰高). 用建立的方法测定了砷处理后的水稻木质部伤流液中的砷量, 4种砷化合物的加标回收率为89%~105%. 该装置接口简单, 方法分离度好, 灵敏度高, 可用于实际样品中痕量砷化合物的形态分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号