首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Summary Slurry preparations are an effective way to introduce solids into the graphite furnace. Ultrasonic agitation keeps samples mixed prior to analysis. Several aspects of the ultrasonic slurry sampling approach are discussed including contamination concerns, analyte partitioning, and the effect of particle size. In addition, sample preparation strategies for slurry preparations of non-powdered materials are reviewed. The suitability of this method for assessing homogeneity is demonstrated.  相似文献   

2.
3.
The analytical conditions for thallium determination in soils and sediments by slurry sampling graphite furnace atomic absorption spectrometry were studied and optimized. Elimination of a strong background for soils rich in organic materials by application of tungsten carbides coated graphite tubes/platforms was studied in detail. Tungsten carbides increased the maximum permissible pyrolysis temperature from 300 to 900 degrees C. The mechanism of tungsten carbide formation on different graphite surfaces was proposed. Application of a strong basic anion-exchange resin for interference elimination in thallium determination in marine sediments was described. Calibration was performed directly using aqueous standards both for soil and sediment analysis. Analysis of CRM confirmed the reliability of the approach. The precision and accuracy of thallium determination by the described method for soils and sediments was acceptable. A characteristic mass of 13.8 pg was obtained and the limit of detection for the proposed method was around 0.06 microg g(-1) Tl.  相似文献   

4.
Solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS) was investigated as a potential technique for the routine determination of trace elements in mineral coal and cadmium, copper and lead were chosen as the model elements. Cadmium and lead could be determined at their main resonance lines at 228.8 nm and 283.3 nm, respectively, but an alternate, less sensitive line had to be used for the determination of copper because of the high copper content in coal. No modifier was necessary for the determination of copper and calibration against aqueous standards provided sufficient accuracy of the results. For the determination of cadmium and lead two different modifiers were investigated, palladium and magnesium nitrates in solution, added on top of each sample aliquot before introduction into the atomizer tube, and ruthenium as a ‘permanent’ modifier. Both approaches gave comparable results, and it is believed that this is the first report about the successful use of a permanent chemical modifier in SS-GF AAS. Calibration against solid standards had to be used for the determination of cadmium and lead in order to obtain accurate values. The agreement between the values found by the proposed procedure and the certificate values for a number of coal reference materials was more than acceptable for routine purposes. The detection limits calculated for 1 mg of coal sample using the ‘zero mass response’ were 0.003 and 0.007 μg g−1 for cadmium with the permanent modifier and the modifier solution, respectively, approximately 0.04 μg g−1 for lead, and 0.014 μg g−1 for copper.  相似文献   

5.
A fast and reliable method for the direct determination of iron in sand by solid sampling graphite furnace atomic absorption spectrometry was developed. A Zeeman-effect 3-field background corrector was used to decrease the sensitivity of spectrometer measurements. This strategy allowed working with up to 200 μg of samples, thus improving the representativity. Using samples with small particle sizes (1–50 μm) and adding 5 μg Pd as chemical modifier, it was possible to obtain suitable calibration curves with aqueous reference solutions. The pyrolysis and atomization temperatures for the optimized heating program were 1400 and 2500 °C, respectively. The characteristic mass, based on integrated absorbance, was 56 pg, and the detection limits, calculated considering the variability of 20 consecutive measurements of platform inserted without sample was 32 pg. The accuracy of the procedure was checked with the analysis of two reference materials (IPT 62 and 63). The determined concentrations were in agreement with the recommended values (95% confidence level). Five sand samples were analyzed, and a good agreement (95% confidence level) was observed using the proposed method and conventional flame atomic absorption spectrometry. The relative standard deviations were lower than 25% (n = 5). The tube and boat platform lifetimes were around 1000 and 250 heating cycles, respectively. Correspondence: Pedro V. Oliveira, Instituto de Química, Universidade de S?o Paulo, CP 26077, 05513-970 S?o Paulo, SP, Brazil  相似文献   

6.
The trace impurities Cr, Cu, Fe, K, Mn, Sb and Zn were determined in powdered aluminum nitride by direct solid sampling graphite furnace atomic absorption spectrometry using a ZEEnit 60 atomic absorption spectrometer. This spectrometer features inverse Zeeman-effect background correction and a variable magnetic field enabling measurements in two sensitivity modes over a concentration range of three orders of magnitude. The measurement sensitivity can be adjusted to the analyte concentration in the sample. The use of chemical modifiers was not necessary. Calibration was carried out by means of calibration curves obtained with aqueous standard solutions. Accuracy was checked mainly by comparison of the results with those obtained by instrumental and radiochemical neutron activation analysis whereby, excluding the results for potassium, no significant differences were found by carrying out the t-test at the significance level 0.05. The limits of detection were between 0.05 ng g−1 (Zn) and 80 ng g−1 (Fe) and the relative standard deviations below 11 %. With the proposed method, up to ten measurement cycles can be carried out in one hour.  相似文献   

7.
This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 g) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 °C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 °C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 °C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 °C and atomization at 1500 °C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g–1, calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6–1.2 mg were analyzed.Dedicated to the memory of Wilhelm Fresenius  相似文献   

8.
A first collaborative study was carried out to test the precision and accuracy of solid sampling graphite furnace atomic absorption spectrometry (SS-ZAAS). Seven test materials, i.e. red cabbage, two bovine liver materials, milk powder (BCR 150), kale, industry dust, and fish homogenate were sent to 11 participants. These test materials were analyzed for cadmium, lead, copper and mercury. Precision was calculated as the repeatability (r) and the reproducibility limits (R). Accuracy was calculated with respect to the Certified Reference Material BCR 150, milk powder. Results showed that the accuracy for milk powder was excellent, and that most results regarding repeatability and reproducibility limits were satisfying. However, some problems were met especially with copper in bovine liver and cadmium and copper in industry dust. It was not clear what caused the problems: the method SS-ZAAS or the inhomogeneity of the material. Especially the industry dust test material has to be studied further in order to locate the origin of the problems.Presented at the 5th International Colloqium on Solid Sampling with Atomic Spectroscopy, May 18–20, 1992, Geel, Belgium  相似文献   

9.
石墨炉原子吸收法测定石脑油中微量砷   总被引:2,自引:0,他引:2  
试样用四氢呋喃(THF)有机溶剂稀释,以硝酸镍为基体改进剂,研究采用石墨炉原子吸收法直接进样测定石脑油中的砷量。研究表明,砷量在0~50μg/L范围内线性关系良好,回收率93%~104%。  相似文献   

10.
Zheng Y  Su X 《Talanta》1993,40(3):347-350
Influences of atomization temperatures on the characteristic mass and the atomic absorption coefficient of chromium were studied. The experimental results show that the values of characteristic mass have appeared to be stable to better than 10% when the analyte is atomized in the range of 2500-2800 degrees. The standardless analysis was applied to the determination of chromium in standard sediment and geochemical reference samples and satisfactory results were obtained.  相似文献   

11.
Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS.Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L−1 with detection limit of 0.6 ng L−1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L−1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L−1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

12.
Summary Atmospheric lead was collected by membrane filters using two low volume air samplers at Jülich, Stolberg, and Wetzlar, Federal Republic of Germany. Sampling times varied from 2 to 8 h. After sampling, each filter was subsampled in two cross-sections using a clean stainless steel punch (diameter 5 mm). The lead content of each subsample disc was determined directly by Zeeman GFAAS, calibrated with aqueous standard solutions and supported by solid reference materials. The distribution of lead between the subsamples was generally homogeneous, with standard deviations ranging from 11 to 37%, but typically <15% for samples with 8 h sampling time. The analysis of each filter usually took about 30 min. The differences in air quality between the three sampling locations, as measured by the lead concentrations, are discussed. In general, Stolberg appears to have the highest lead concentrations. The mass particle-size distribution of lead in the aerosol samples collected by membrane filters using a cascade impactor at Stolberg was also investigated with the same analytical technique. Using graphite platform boats as direct samplers, it is possible for the dry deposition flux of lead to be estimated. This provides a quick means of assessing the levels of lead pollution in the atmospheric environment. With lead concentrations measured in parallel, the dry deposition velocities of lead can be estimated under various meteorological conditions. Application of similar sampling and analytical techniques to other atmospheric trace metals may be possible.  相似文献   

13.
A simple procedure for the determination of manganese in different sections of human brain samples by graphite furnace atomic absorption spectrometry has been developed. Brain sections included cerebellum, hypothalamus, frontal cortex, vermix and encephalic trunk. Two sample preparation procedures were evaluated, namely, slurry sampling and microwave-assisted acid digestion. Brain slurries (2% w/v) could be prepared in distilled, de-ionized water, with good stability for up to 30 min. Brain samples were also digested in a domestic microwave oven using 5 ml of concentrated HNO3. A mixed palladium+magnesium nitrate chemical modifier was used for thermal stabilization of the analyte in the electrothermal atomizer up to pyrolysis temperatures of 1300 °C, irrespective of the matrix. Quantitation of manganese was conducted in both cases by means of aqueous standards calibration. The detection limits were 0.3 and 0.4 ng ml−1 for the slurry and the digested samples, respectively. The accuracy of the procedure was checked by comparing the results obtained in the analysis of slurries and digested brain samples, and by analysis of the NIST Bovine Liver standard reference material (SRM 1577a). The ease of slurry preparation, together with the conventional set of analytical and instrumental conditions selected for the determination of manganese make such methodology suitable for routine clinical applications.  相似文献   

14.
王涛 《分析试验室》2002,21(6):47-49
研究了石墨炉原子化法测定钢铁中痕量铅的干扰情况,并进行了干扰抑制实验。提出了抑制干扰的方法。  相似文献   

15.
The chemical reactions of Ge in the graphite furnace are determined by atomic absorption measurements, X-ray diffraction, electron microscopy and molecular absorption. The sodium germanate formed after the drying cycle is reduced by the carbon of the tube to elemental Ge. Volatile GeO is formed during this reduction process at temperatures higher than 1100 K leads to losses of atomizable Ge. Excess of NaOH enhances the absorbance value of Ge by a factor of two. The reason for this effect is an additional reduction process of GeO to Ge by metallic sodium at temperatures higher than 1500 K. Impregnation of the tube surfaces by carbide forming elements also leads to an enhancement of absorbance.  相似文献   

16.
Shamsipur M  Ramezani M 《Talanta》2008,75(1):294-300
A simple, rapid and sensitive method is proposed for selective determination of ultra trace amounts of gold from different samples. The method is based on highly efficient separation and pre-concentration of gold by dispersive liquid-liquid microextraction of gold followed by its determination with graphite furnace atomic absorption spectrometry. The pre-concentration procedure results in quantitative extraction of gold by victoria blue R from a 10-mL sample into fine droplets of chlorobenzene, with a sedimented volume of 25 microL. Then, 20 microL of 0.04% Pd(NO3)2, as chemical modifier, followed by 10 microL of the sedimented phase were consecutively pipetted into the same auto-sampler device and the content is injected into the graphite tube and the gold content is determined by graphite furnace atomic absorption spectrometry. After optimizing the extraction conditions and instrumental parameters, a pre-concentration factor of about 388 is obtained for the system. The analytical curve is linear in a concentration range of 0.03-0.5 ng mL(-1). The detection limit and relative standard deviation are 0.005 ng mL(-1) and 4.2%, respectively. The method was successfully applied to the extraction and determination of gold in tap water and silicate ore samples.  相似文献   

17.
Summary Ultrasonic slurry graphite furnace atomic absorption spectrometry is a useful technique for automated direct analysis of solids. The effectiveness of ultrasonic agitation for mixing samples is demonstrated. This analytical approach is evaluated to identify sources of imprecision. Strategies for optimizing slurry preparations are discussed, focusing on particle size, density, analyte partitioning, and sampling limitations. Finally, a teflon bead method is presented for grinding biological and botanical samples. An optimized general approach for ultrasonic slurry sampling is presented.Presented at the 5th International Colloquium on Solid Sampling with Atomic Spectroscopy, May 18–20, 1992; Geel, Belgium. Papers edited by R. F. M. Herber, Amsterdam.  相似文献   

18.
An overview of the latest innovations in the graphite furnace atomic absorption spectrometry technique is described. The use of the transverse heated graphite atomizer technology with its huge advantages, the possibilities of running powdered solids through the slurry technique, and the future possibility of using flow injection on-line with the graphite furnace are mentioned.  相似文献   

19.
This work shows the potentiality of As as internal standard to compensate errors from sampling of sparkling drinking water samples in the determination of selenium by graphite furnace atomic absorption spectrometry. The mixture Pd(NO3)2/Mg(NO3)2 was used as chemical modifier. All samples and reference solutions were automatically spiked with 500 μg l−1 As and 0.2% (v/v) HNO3 by the autosampler, eliminating the need for manual dilutions. For 10 μl dispensed sample into the graphite tube, a good correlation (r=0.9996) was obtained between the ratio of analyte absorbance by the internal standard absorbance and the analyte concentrations. The relative standard deviations (R.S.D.) of measurements varied from 0.05 to 2% and from 1.9 to 5% (n=12) with and without internal standardization, respectively. The limit of detection (LD) based on integrated absorbance was 3.0 μg l−1 Se. Recoveries in the 94-109% range for Se spiked samples were obtained. Internal standardization (IS) improved the repeatability of measurements and increased the lifetime of the graphite tube in ca. 15%.  相似文献   

20.
Summary A simple and rapid analytical method has been developed for the direct determination of trace quantities of thallium in nickel and cobalt-base heatresisting alloys by graphite furnace atomic absorption spectrometry. Hydrofluoric acid, sulphuric acid, and hydrogen peroxide were used for the dissolution of a wide variety of these alloys. The interferences of matrix elements and acids were eliminated. The absorbance of thallium is constant over a wide range of ashing temperatures. Synthetic standard solutions composed of nickel or cobalt matrix and thallium were used for calibration. The detection limit for thallium by this method is 0.2 ppm in the sample. Mechanisms of the interferences are discussed.
Schnelle Bestimmung von Thalliumspuren in hitzebeständigen Cobalt- und Nickellegierungen durch Atomabsorptions-Spektralphotometrie mit dem Graphitofen
Zusammenfassung Ein Verfahren zur AAS-Bestimmung von Thallium in verschiedenartigen Cobalt- und Nickellegierungen wird beschrieben. Zur Auflösung der Probe werden Flußsäure, Schwefelsäure und Wasserstoffperoxid verwendet. Störungen durch Matrixelemente und durch die Säuren konnten beseitigt werden. Die Thalliumabsorption ist über einen weiten Temperaturbereich bei der Veraschung konstant. Zur Eichung dienen synthetische Lösungen von Cobalt- bzw. Nikkelmatrix und Thallium. Die Nachweisgrenze für Thallium beträgt 0,2 ppm. Die Mechanismen der Störungen werden diskutiert.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号