首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel surface ionization source for ion mobility spectrometer   总被引:1,自引:0,他引:1  
A surface ionization (SI) source is designed and prepared for ion mobility spectrometer (IMS). The source acts not only as an emitter but also an ion injector which can inject ions periodically into the drift region of drift tube. Using the dual-role source, the dimension of the drift tube can be decreased and the circuit for high voltage can be simplified efficiently. The IMS with the SI source has a response range of ∼4 orders of magnitude and a good reproducibility to tri-ethylamine. Compared with radioactive ionization (RI), the ultra-short time for ion injection and the zero level base line of ion mobility spectrum are characteristics of the surface ionization.  相似文献   

2.
A program for simulation of ion trajectories in ion mobility spectrometry (IMS) instruments has been developed and incorporated into SIMION 7.0 [Int. J. Mass Spectrom. 200 (2000) 3–25]. Simulations were based on elastic collisions between ions and gas particles and conducted for an IMS drift tube. The program was validated by comparing the reduced mobility of helium ions derived from the simulation with the experimental data for helium ions in neon drift gas in low electric fields. Typical IMS parameters, including pressure, temperature, and flow rate of the drift gas were taken into account in the simulations. The program demonstrates capabilities of generating IMS spectra and predicting ion transport efficiency and separating ions. For the IMS drift tube studied, a correlation between imperfection of the electric field distribution and low resolution has been observed.  相似文献   

3.
基于离子迁移谱的爆炸物探测仪多采用放射性电离源,发展非放射性电离源一直是该技术的研究热点。本研究基于电晕放电原理设计了一种新型负电晕放电电离源结构,结合自行研制的离子迁移谱仪,应用于痕量爆炸物的快速、高灵敏检测。单向气流模式下,对此电离源的气流、放电电压等运行参数进行了系统优化,得到最佳实验条件为:电晕放电电离源结构的电极环孔直径为3 mm,针-环距离为2 mm,放电电压为2400 V,漂气流速为1200 mL/min。在此条件下,避免了放电副产物氮氧化物和臭氧等引发的一系列复杂反应,得到了单一的反应试剂离子O-2(H2O)n。将其应用于爆炸物,如2,4,6-三硝基甲苯(TNT)、硝酸铵(AN)、硝化甘油( NG)、太安( PETN)、黑索金( RDX)等的高灵敏快速直接检测,对TNT的检测限达到200 pg/μL。结果表明,此负电晕放电电离源具有灵敏度高、结构简单、无辐射性、反应试剂离子单一等优点,在爆炸物快速高灵敏检测、公共安全保障等方面具有广阔的应用前景。  相似文献   

4.
5.
In recent years, the resolving power of ion mobility instruments has been increased significantly, enabling ion mobility spectrometry (IMS) to be utilized as an analytical separation technique for complex mixtures. In theory, decreasing the drift tube temperature results in increased resolution due to decreased ion diffusion. However, the heat requirements for complete ion desolvation with electrospray ionization (ESI) have limited the reduction of temperatures in atmospheric pressure ion mobility instruments. Micro-electrospray conditions were investigated in this study to enable more efficient droplet formation and ionization with the objective of reducing drift tube temperatures and increasing IMS resolution. For small molecules (peptides), the drift tube temperature was reduced to ambient temperature with good resolution by employing reduced capillary diameters and flow rates. By employing micro-spray conditions, experimental resolution values approaching theoretically predicted resolution were achieved over a wide temperature range (30 to 250 °C). The historical heat requirements of atmospheric pressure IMS due to ESI desolvation were eliminated due to the use of micro-spray conditions and the high-resolution IMS spectra of GLY-HIS-LYS was obtained at ambient temperature. The desolvation of proteins (cytochrome c) was found to achieve optimal resolution at temperatures greater than 125 °C. This is significantly improved from earlier IMS studies that required drift tube temperatures of 250°C for protein desolvation.  相似文献   

6.
Ion mobility spectrometry (IMS) is an analytical technique used for fast and sensitive detection of illegal substances in customs and airports, diagnosis of diseases through detection of metabolites in breath, fundamental studies in physics and chemistry, space exploration, and many more applications. Ion mobility spectrometry separates ions in the gas‐phase drifting under an electric field according to their size to charge ratio. Ion mobility spectrometry disadvantages are false positives that delay transportation, compromise patient's health and other negative issues when IMS is used for detection. To prevent false positives, IMS measures the ion mobilities in 2 different conditions, in pure buffer gas or when shift reagents (SRs) are introduced in this gas, providing 2 different characteristic properties of the ion and increasing the chances of right identification. Mobility shifts with the introduction of SRs in the buffer gas are due to clustering of analyte ions with SRs. Effective SRs are polar volatile compounds with free electron pairs with a tendency to form clusters with the analyte ion. Formation of clusters is favored by formation of stable analyte ion‐SR hydrogen bonds, high analytes' proton affinity, and low steric hindrance in the ion charge while stabilization of ion charge by resonance may disfavor it. Inductive effects and the number of adduction sites also affect cluster formation. The prediction of IMS separations of overlapping peaks is important because it simplifies a trial and error procedure. Doping experiments to simplify IMS spectra by changing the ion‐analyte reactions forming the so‐called alternative reactant ions are not considered in this review and techniques other than drift tube IMS are marginally covered.  相似文献   

7.
Matz LM  Tornatore PS  Hill HH 《Talanta》2001,54(1):171-179
The use of ion mobility spectrometry systems to detect explosives in high security situations creates a need to determine compounds that interfere and may compromise accurate detection. This is the first study to identify possible interfering air contaminants common in airport settings by IMS. Seventeen suspected contaminants from four major sources were investigated. Due to the ionization selectivity gained by employing chloride reactant ion chemistry, only 7 of the 17 compounds showed an IMS response. Of those seven compounds, only 4,6-dinitro-o-cresol (4,6DNOC) was found to have a similar mobility to 2,4,6-trinitrotoluene (TNT) with K(o) values of 1.55 and 1.50 cm(2) V(-1) s(-1), respectively. Although baseline resolution between TNT and 4,6DNOC was not achieved, the drift time for TNT was still easily identified. Alkyl-nitrated phenols, due to acidic fog, responded the strongest in the IMS. The effect of contamination on TNT sensitivity was investigated. Charge competition between TNT and 2,4-dinitrophenol (2,4DNP) was found to occur and to effect TNT sensitivity.  相似文献   

8.
Secondary electrospray ionization-ion mobility-time of flight mass spectrometry (SESI-IM-TOFMS) was used to evaluate common household products and food ingredients for any mass or mobility responses that produced false positives for explosives. These products contained ingredients which shared the same mass and mobility drift time ranges as the analyte ions for common explosives. The results of this study showed that the vast array of compounds in these products can cause either mass or mobility false positive responses. This work also found that two ingredients caused either enhanced or reduced ionization of the target analytes. Another result showed that an IMS can provide real-time separation of ion species that impede accurate mass identifications due to overlapping isotope peak patterns. The final result of this study showed that, when mass and mobility values were used to identify an ion, no false responses were found for the target explosives. The wider implication of these results is that the possibility exists for even greater occurrences of false responses from complex mixtures found in common products. Neither IMS nor MS alone can provide 100% assurance from false responses. IMS, due to its low cost, ease of operation, rugged reliability, high sensitivity and tunable selectivity, will remain the field method of choice for the near future but, when combined with MS, can also reduce the false positive rate for explosive analyses.  相似文献   

9.
Quantitative solid phase micro-extraction (SPME) coupled with ion mobility spectrometry is demonstrated using the analysis of ephedrine in urine. Since its inception in the 1970's ion mobility spectrometry (IMS) has evolved into a useful technique for laboratories to detect explosives, chemical warfare agents, environment pollutants and, increasingly, for detecting drugs of abuse. Ephedrine is extracted directly from urine samples using SPME and the analyte on the fiber is heated by the IMS desorber unit and vaporized into the drift tube. The analytical procedure was optimized for fiber coating selection, extraction temperature, extraction time, sample pH, and analyte desorption temperature. The carryover effects, ion fragmentation characteristics, peak shapes, and drift times of ephedrine were also evaluated based on the direct interfacing of SPME to IMS. A limit of detection of 50 ng/mL of ephedrine in urine and a linear range of 3 orders of magnitude were obtained, showing that SPME-IMS compares well to other techniques for ephedrine and drug analysis presented in the literature.  相似文献   

10.
Ion mobility spectrometry is a well-known method for fast trace gas detection. Detection limits in the very low ppb- and even ppt-range, fast response times down to a second and good separation power combined with a reasonable instrumental effort make ion mobility spectrometry more and more attractive. Aiming for higher separation power we investigate the ion specific lifetime of different ion species in a field free reaction region of a drift tube ion mobility spectrometer equipped with a pulsed non-radioactive electron gun. When turning off the electron gun ionization stops and the total ion concentration in the reaction region starts to decrease, while different ion species have different decay times. By varying the time delay between the end of the ionization and the injection pulse transferring all remaining ions of one polarity from the reaction region into the drift region the individual decay times can be measured. Our experimental data show that the lifetime of ion species in a field free reaction region mainly depends on ion-ion-recombination and charge transfer reactions leading to significant lifetime differences. Therefore, short-lived ions can be effectively suppressed in the reaction region by introducing a sufficient time delay between the end of the ionization and the injection pulse. This allows detecting even smallest concentrations of long-lived ions in a complex short-lived background. From our experimental data it can be also concluded that wall losses and the ion transport within the sample gas stream out of the reaction region just play a minor role in the ion loss.  相似文献   

11.
Acetonitrile vapor and air are useful reagents for the selective detection of nitroaromatic compounds using atmospheric pressure ion/molecule reactions. Reagent ions CH2CN- and CN- generated from acetonitrile, and O-*, OH- and OOH- produced from the oxygen in air, react with vapor-phase and condensed-phase nitroaromatics in the course of atmospheric pressure chemical ionization (APCI) and desorption atmospheric pressure chemical ionization (DAPCI), respectively. The homogeneous and the heterogeneous phase reactions both lead to the formation of the same anionic adducts. These adducts have characteristic fragmentation patterns upon collisional activation, which makes these two reagents valuable for the selective detection of particular nitroaromatics, including explosives present as components of complex mixtures. Complementary information is available from the two reagents because their different chemistry facilitates analyte identification. DAPCI is demonstrated to be a useful ambient detection method for nitroaromatic explosives absorbed on surfaces.  相似文献   

12.
Abu B. Kanu 《Talanta》2007,73(4):692-699
This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.  相似文献   

13.
The contamination of barley by molds on the field or in storage leads to the spoilage of grain and the production of mycotoxins, which causes major economic losses in malting facilities and breweries. Therefore, on‐site detection of hidden fungus contaminations in grain storages based on the detection of volatile marker compounds is of high interest. In this work, the volatile metabolites of 10 different fungus species are identified by gas chromatography (GC) combined with two complementary mass spectrometric methods, namely, electron impact (EI) and chemical ionization at atmospheric pressure (APCI)‐mass spectrometry (MS). The APCI source utilizes soft X‐radiation, which enables the selective protonation of the volatile metabolites largely without side reactions. Nearly 80 volatile or semivolatile compounds from different substance classes, namely, alcohols, aldehydes, ketones, carboxylic acids, esters, substituted aromatic compounds, alkenes, terpenes, oxidized terpenes, sesquiterpenes, and oxidized sesquiterpenes, could be identified. The profiles of volatile and semivolatile metabolites of the different fungus species are characteristic of them and allow their safe differentiation. The application of the same GC parameters and APCI source allows a simple method transfer from MS to ion mobility spectrometry (IMS), which permits on‐site analyses of grain stores. Characterization of IMS yields limits of detection very similar to those of APCI‐MS. Accordingly, more than 90% of the volatile metabolites found by APCI‐MS were also detected in IMS. In addition to different fungus genera, different species of one fungus genus could also be differentiated by GC‐IMS.  相似文献   

14.
The comparison of nanospray and microspray ionizations for detecting mixtures of compounds by ion mobility spectrometry has been investigated for sensitivity, ion transmission through a drift tube, and ion suppression effects when used as an ionization source for ambient pressure ion mobility spectrometry (IMS). Several articles have demonstrated that nano-electrospray ionization mass spectrometry (n-ESI-MS) has improved sensitivity, provides less background noise, and lower limits of detection than micro-electrospray ionization (μ-ESI) for IMS. Most importantly, data from n-ESI-MS is concentration-sensitive. Our laboratory previously published an article that observed a striking result when μ-ESI-IMS was investigated for a single compound in the positive ion mode. The data reported was mass-sensitive. In this new investigation, we have investigated mixtures, and experiments were designed to evaluate the effect of sensitivity, ion transmission and ion suppressions in μ-ESI-IMS and n-ESI-IMS. At an electrospray flow rate in the μL min−1 range, compounds with higher proton affinities responded best while at the nanospray flow rates of nL min−1, relative responses were more equal. This study observed that a decreased ESI flow rate resulted in a decreased ion signal. These trends demonstrated less sensitivity for ESI-IMS at reduced flow rates but suggest better quantification. At higher flow rates, relative ionization efficiencies were still uniform for all the components studied individually and in mixtures and sensitivity improved by about 78%. Concentration studies showed that at high concentrations, ion detection efficiencies were uniform at about 33% for all compounds studied individually and in mixtures. At low concentrations, the detection efficiency varied from 31% to 86%, depending on the proton affinity of the component in the mixture. Ion transmission through the IMS tube measured with a segmented Faraday detector that was incorporated into the IMS design indicated that most of the ion current for mixtures was transported through the IMS tube with a radius of less than 18 mm for both positive and negative ion modes.  相似文献   

15.
Significant developments in the field of ambient desorption/ionization mass spectrometry (MS) have led to high-throughput direct analysis and imaging capabilities. However, advances in coupling ambient ionization techniques with standalone drift tube ion mobility spectrometry (DTIMS) have been comparatively slower, despite the attractive ruggedness and simplicity of IMS. In this study, we have developed and characterized a laser ablation/desorption electrospray ionization (LADESI) DTIMS platform, and applied it to the detection of active pharmaceutical ingredients (APIs) in antimalarial tablets collected in developing countries. The overarching goal of this work was to perform an initial evaluation of LADESI DTIMS as a technique with the potential for constituting the core of a portable drug quality-testing platform. The set-up consisted of an IR laser for desorption and an electrospray ionizer for capturing the ablated plume coupled to a high-resolution monolithic resistive glass drift tube ion mobility spectrometer. For more confident API identification, tablet extracts were also investigated via electrospray IM MS to correlate LADESI DTIMS reduced mobility (K(0)) values to m/z values. Overall, it was found that the IR LADESI DTIMS platform provided distinct ion mobility spectral fingerprints that could be used to detect the presence of the expected APIs, helping to distinguish counterfeit drugs from their genuine counterparts.  相似文献   

16.
The ionization pathways and ion mobility were determined for sets of structural isomeric and stereoisomeric non-polar hydrocarbons (saturated and unsaturated cyclic hydrocarbons and aromatic hydrocarbons) using a novel miniature differential mobility spectrometer with atmospheric-pressure photoionization (APPI) to assess how structural and stereochemical differences influence ion formation and ion mobility. The analytical results obtained using the differential mobility spectrometry (DMS) were compared with the reduced mobility values measured using conventional time-of-flight ion mobility spectrometry (IMS) with the same ionization technique.The majority of differences in DMS ion mobility spectra observed among isomeric cyclic hydrocarbons can be explained by the formation of different product ions. Comparable differences in ion formation were also observed using conventional IMS and by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. Using DMS, isomeric aromatic hydrocarbons can in the majority of cases be distinguished by the different behavior of product ions in the strong asymmetric radio frequency (rf) electric field of the drift channel. The different peak position of product ions depending on the electric field amplitude permits the differentiation between most of the investigated isomeric aromatics with a different constitution; this stands in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomeric aromatic compounds.  相似文献   

17.
Ion mobility spectrometry (IMS) was used as a flow-injection detector to quantitatively examine the ionization chemistry of aniline in hexane. A 5-microl sample was vaporized at 15-90-sec intervals in a flowing air stream and analyzed with an IMS equipped with acetone reactant ion chemistry, ambient temperature drift tube and membrane-based inlet. Precision was 3-11% relative standard deviation for 1-100 ppm aniline in hexane with 90-sec injection intervals and detection limits were ca. 0.5 ppm with 5-microl injections. Matrix effects with amine and organic solvent mixtures were observed and corrected for low and medium proton affinity interferences with standard addition methods. Pronounced fouling of the IMS occurred when a continuous water flow was introduced for aqueous flow injection-IMS. Continuous water monitoring without degraded IMS performance was possible by sampling air flow through a Silastic tube immersed in an aqueous sample.  相似文献   

18.
Using a simple ion source set-up, laser desorption/ionization on silicon (DIOS) was demonstrated with the use of a custom-made drift tube ion mobility spectrometer (IMS), mounted on a commercial triple quadrupole mass spectrometer, and with an IMS equipped with a Faraday plate detector. DIOS was tested by mobility measurement of tetrapropylammonium iodide, tetrabutylammonium iodide and tetrapentylammonium iodide, whilst 2,6-di-tert- butylpyridine was used as a standard. The reduced mobilities measured for the test halides are in concordance with previously obtained ion mobility spectrometry-mass spectrometry data.  相似文献   

19.
This paper reports the first investigation of electron capture ion mobility spectrometry as a detection method for capillary gas chromatography. In previous work with negative ion mobility detection after gas chromatography, the principal reactant ion species were O2? or hydrated O2? due to the presence of oxygen in the drift gas. These molecular reactant ions have a mobility similar to chloride and bromide ions, which are the principal product ions formed by most halogenated organics via dissociative ion-molecule reactions. Oxygenated reactant ions thus interfere with the selective detection of chloride and bromide product ions. A recently described ion mobility detector design efficiently eliminated ambient impurities, including oxygen, from infiltrating the ionization region of the detector; consequently, in the negative mode of operation, the ionization species with N2 drift gas were thermalized electrons. Thermalized electrons have a high mobility and their drift time occupies a region of the ion mobility spectrum not occupied by chloride, bromide, or other product ions. The result was improved selectivity for halogenated organics which ionize by dissociative electron capture. This was demonstrated by the selective detection of 4,4′-dibromobiphenyl from the components of a polychlorinated biphenyl mixture (Aroclor 1248).  相似文献   

20.
Small concentrations of toxic compounds in atmospheric air have often to be measured selectively by portable equipment. Ion mobility spectrometers are instruments used to monitor explosives, drugs and chemical warfare agents. First responders also need to detect hazardous gases released in accidents while transporting them or in their production in chemical plants. Not all toxic gases can be measured with the time of flight ion mobility spectrometer at concentrations required by safety standards applied in workplace areas. The time of flight ion mobility spectrometer is based on an inlet membrane, an ionization region, a shutter grid and the drift region with a detector in the drift tube. The separation of ions is due to the different mobility of the ions when they are exposed to a weak electric field (E = 200…300 V/cm). High field asymmetric waveform spectrometry or differential mobility spectrometry is a relative new ion mobility spectrometer technology. The separation is due to the different mobilities of the ions in the high (E = 15000...30000 V/cm) and the weak electric fields. About 30 different toxic industrial chemical compounds were analyzed with both systems under comparable conditions. For selected examples the detection limits, the selectivity and the identification capabilities of the two systems for some of the main compounds will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号