首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
《Electroanalysis》2003,15(3):175-182
Three different kinds of glassy carbon (GC‐R, GC‐K, GC‐G) were equally pretreated, further modified with electrochemically deposited Prussian Blue and used as sensors for hydrogen peroxide at an applied potential of ?50 mV (vs. Ag|AgCl). Their performance was evaluated with respect to the following parameters: the coverage and electrochemistry of the electrodeposited Prussian Blue, the sensitivity and the lower limit of detection for hydrogen peroxide, and the operational stability of the sensors. GC‐R showed the best behavior concerning the surface coverage and the operational stability of the electrodeposited Prussian Blue. For this electrode the sensitivity for hydrogen peroxide (10 μM) was 0.25 A/M cm2 and the detection limit was 0.1 μM. Scanning electron microscopy was used to study the surfaces of the three electrodes before and after the electrodeposition of Prussian Blue and to search for the reason for the three different behaviors between the different glassy carbon materials. The Prussian Blue modified GC‐R was also used for the construction of a glucose biosensor based on immobilizing glucose oxidase in Nafion membranes on top of electrodeposited Prussian Blue layer. The operational stability of the glucose biosensors was studied in the flow injection mode at an applied potential of ?50 mV (vs. Ag|AgCl) and alternatively injecting standard solutions of hydrogen peroxide (10 μM) and glucose (1 mM) for 3 h. For the GC‐R based biosensor a 2.8% decrease of the initial glucose response was observed.  相似文献   

2.
Carbon film resistor electrodes have been evaluated as transducers for the development of multiple oxidase-based enzyme electrode biosensors. The resistor electrodes were first modified with Prussian Blue (PB) and then covered by a layer of covalently immobilized enzyme. Electrochemical impedance spectroscopy was used to characterize the interfacial behaviour of the Prussian Blue modified and enzyme electrodes; the spectra demonstrated that the access of the substrates is essentially unaltered by application of the enzyme layer. These enzyme electrodes were used to detect the substrate of the oxidase (glucose, ethanol, lactate, glutamate) via reduction of hydrogen peroxide at +50 mV versus Ag/AgCl in the low micromolar range. Response times were 1-2 min. Finally, the glucose, ethanol and lactate electrochemical biosensors were used to analyse complex food matrices—must, wine and yoghurt. Data obtained by the single standard addition method were compared with a spectrophotometric reference method and showed good correlation, indicating that the electrodes are suitable for food analysis.  相似文献   

3.
Karyakin AA  Karyakina EE  Gorton L 《Talanta》1996,43(9):1597-1606
Optimisation of the electrodeposition of Prussian Blue onto mirrored glassy carbon electrodes yielded a modified electrode practically insensitive to oxygen reduction. At the same time the electrode activity towards hydrogen peroxide reduction was extremely high. This allowed the detection of hydrogen peroxide by electroreduction over a wide potential range. Flow-injection investigations of this electrode inserted into a flowthrough electrochemical cell of the confined wall-jet type showed that the response for hydrogen peroxide is limited by diffusion. Glucose and alcohol biosensors were made by immobilisation of glucose oxidase and alcohol oxidase respectively, within a Nafion layer, onto the top of the Prussian-Blue-modified electrodes. By increasing the density of Nafion and decreasing the measuring potential the glucose biosensor was made completely insensitive to both ascorbate and acetominophes.  相似文献   

4.
In this work, three types of electrodes suitable for amperometric glucose biosensors were designed. One type of electrode was based on bio‐selective layer of polypyrrole/(glucose oxidase)/(Prussian Blue) (Ppy/GOx/PB) and it was used as a control electrode regarding to which electrochemical properties of two other types of electrodes were compared. During the formation of Prussian blue layers graphite electrodes were additionally modified by Ni‐hexacyanoferrate (NiHCF) and by Co‐hexacyanoferrate (CoHCF) in order to design Ppy/GOx/PB‐NiHCF and Ppy/GOx/PB‐CoHCF electrodes, respectively. Some physicochemical characteristics of all three types of electrodes were evaluated and compared. The Ppy/GOx/PB‐NiHCF electrode showed wider linear range of the calibration curve than Ppy/GOx/PB and Ppy/GOx/PB‐CoHCF electrodes. The effect of temperature on analytical performance of the Ppy/GOx/PB‐NiHCF based biosensor has been evaluated and activation energy of enzyme catalysed reaction has been calculated within the temperature range of 15 °C to 30 °C.  相似文献   

5.
Electroanalytical applications of Prussian Blue and its analogs   总被引:1,自引:0,他引:1  
The applications of transition metal hexacyanoferrates in electroanalysis are surveyed. Prussian Blue (ferric hexacyanoferrate) is recognized as the most promising low-potential transducer for hydrogen peroxide reduction among all known systems. The advantages of Prussian Blue over platinum or peroxidase electrodes for hydrogen peroxide detection are discussed. Various types of biosensors based on transition metal hexacyanoferrates and oxidase enzymes are considered. Amperometric biosensors based on Prussian Blue-modified electrodes allow the detection of glucose and glutamate down to 10–7 mol L–1 in the flow-injection mode. The future prospects of Prussian Blue-modified electrodes in analytical chemistry for the monitoring of chemical toxic agents, in clinical diagnostics, and in food control are outlined.  相似文献   

6.
A multilayered glucose biosensor via sequential deposition of Prussian blue (PB) nanoclusters and enzyme-immobilized poly(toluidine blue) films was constructed on a bare Au electrode using electrochemical methods. The whole configuration of the present biosensor can be considered as an integration of several independent hydrogen peroxide sensing elements. In each sensing element, the poly(toluidine blue) film functioned as both the supporting matrix for the glucose oxidase immobilization and the inhibitor for the diffusion of interferences, such as ascorbic acid and uric acid. Meanwhile, the deposited Prussian blue nanocluster layers acts as a catalyst for the electrochemical reduction of hydrogen peroxide formed from enzymatic reaction. Performance of the whole multilayer configuration can be tailored by artificially arranging the sensing elements assembled on the electrode. Under optimal conditions, the biosensors exhibit a linear relationship in the range of 1 x 10(-4) to 1 x 10(-2) mol/L with the detection limit down to 10(-5) mol/L. A rapid response for glucose could be achieved in less than 3 s. For 1 mM glucose, 0.5 mM acetaminophen, 0.2 mM uric acid, and 0.1 mM ascorbic acid have no obvious interferences (<5%) for glucose detection at an optimized detection potential. The present multilayered glucose biosensor with a high selectivity and sensitivity is promising for practical applications.  相似文献   

7.
Glucose oxidase (GOx) was immobilized in the organic-inorganic Langmuir-Bldogett (LB) films consisting of octadecyltrimethylammonium (ODTA) and nanosized Prussian blue (PB) clusters. The amperometric glucose biosensors based on the LB films were fabricated and tested. It was found that the sensors exhibited a clear response current under an applied voltage of 0.0 V (vs Ag/AgCl). The linearity of current density versus glucose concentration was confirmed below 15 mmol/L concentration. This is the first observation of biosensor function of the hybrid organic-inorganic LB films. The successful preparation of glucose sensors operating at the very low potential indicates that the adsorbed PB clusters in the LB films act as an electrocatalyst for the electrochemical reduction of hydrogen peroxide, which is the final product of the enzymatic reaction sequence. The observed low potential applicability is estimated to inhibit the responses of interferants such as ascorbic acid, uric acid, and acetominophen. It was also found that an electrostatic interaction between positively charged ODTA+ and the adsorbed species of both GOx and PB provided a stabilized adsorption state in the LB films. Such stable immobilization contributes to the steady amperometric response current observed in the present ODTA/PB/GOx LB films.  相似文献   

8.
Koncki R  Lenarczuk T  Radomska A  Głab S 《The Analyst》2001,126(7):1080-1085
Optical biosensing schemes based on enzymatically modified inorganic/organic transparent films predominately composed of Prussian Blue are demonstrated. The composite film, which is non-electrochemically deposited on a non-conducting support. is used as an optical transducer for flow-through biosensors based on hydrolases and oxidases. Urease and glucose oxidase are utilized as model enzymes. Action of the urea biosensor is based on optical pH sensitivity of Prussian Blue indicator. The glucose biosensor is acting as first-generation optical biosensor based on in situ generated Prussian White transducer for hydrogen peroxide. These simple, single-pass transmission optical biosensors exhibit sensitivity in the millimolar range of concentration. The biosensors are very stable owing to presence of a poly(pyrrolylbenzoic acid) network in the composite material. This organic polymer plays a dual role as a binding agent for inorganic material and as a functionalized support for strong covalent immobilization of enzyme molecules.  相似文献   

9.
Fabrication of structured film (on glassy carbon substrate) composed of compact Prussian Blue (that has been prepared by alternate immersions and through assembling within ultra-thin layers of 4(pyrrole-1-yl)-benzoic acid, PPyBA) and poly(3,4-ethylendioxythiophene), PEDOT, is described. This functionalized film has been characterized by fast charge propagation, and it has served as a redox conducting template for permanent attachment of a model enzyme, horseradish peroxidase, HRP. The resulting organic-inorganic system acts as an effective hybrid bioelectrocatalyst for electroreduction of hydrogen peroxide, a model reactant for biosensors and biofuel cells. Among important issues are rigidity, permanence of enzyme attachment, morphology, hydrophilicity, and attractive mediating capabilities of the PEDOT-stabilized Prussian Blue based structured film.  相似文献   

10.
Amperometric biosensors are widely used for clinical, food industry and environmental control. A universal platform allowing immobilization of different enzymes could provide a fast and easy way to design new sensors, but the main drawback effect with oxidase based biosensors is the production of hydrogen peroxide. The direct electron transfer is a way to limit the H2O2 production. A modified electrode described by Zhao et al. (Bioelectrochemistry, 69(2):158, 2006), based on immobilization of glucose oxidase/colloidal gold nanoparticles on a glassy carbon electrode by Nafion film, has been used. Its sensitivity is 0.4 μA mM?1 cm?2, reproducibility is 3.0%, detection limit is 0.37 mM, response to glucose is linear up to 20 mM; limit of detection is 0.37 mM and response time is about 1.5 min. This sensor displays a formal redox potential compatible with a direct electron transfer, and has been tested for its response in time and GOx denaturation by X-ray photoelectron spectroscopy. Vanishing of disulphide bonds of GOx has been observed after a period in a saturating solution of glucose but this does not appear determinant in loss of enzyme activity.  相似文献   

11.
Prussian blue modified carbon ionic liquid electrodes (PB‐CILEs) were fabricated using chemical and electrochemical procedures. Chemically fabricated PB‐CILE exhibited an excellent sensitivity (0.0866 μA μM?1), low detection limit (0.01 μM) and two linear ranges (0.01–1 and 1–600 μM) toward hydrogen peroxide. Then, glucose oxidase (GOx) was immobilized on the surface of PB‐CILE to fabricate glucose biosensor using three different procedures involving cross linking with glutaraldehyde (GLU) and bovine serum albumin (BSA), entrapment into the Nafion matrix and covering with a sol‐gel layer. Glucose biosensor fabricated using cross linking procedure showed the best sensitivity (0.0019 μA μM?1) and operational stability for glucose.  相似文献   

12.
This work reports the catalytic activity of a polymer electrogenerated from Fe(III)‐5‐amino‐1,10‐phenantroline solution at a carbon nanotubes paste electrode (CNTPE) towards the oxidation and mainly the reduction of hydrogen peroxide. The important role of carbon nanotubes on the generation of poly(Fe(III)‐5‐amino‐1,10‐phenantroline) is demonstrated through the comparison with the behavior of graphite paste electrode (CPE). The polymer electrogenerated at CNTPE largely improves the amperometric detection of hydrogen peroxide at ?0.100 V. The analytical application of the resulting electrode is demonstrated in connection with the design of a glucose biosensor based on the deposition of GOx and diluted Nafion on the top of the polymer‐modified CNTPE. The quantification of glucose in human serum samples showed a good correlation with the values obtained by the spectrophotometric technique.  相似文献   

13.
This work reports the advantages of carbon paste electrodes modified with electrogenerated magnetite nanoparticles. The nanoparticles present catalytic activity towards hydrogen peroxide reduction. The incorporation of glucose oxidase (GOx) and magnetite in a carbon paste matrix have made possible the development of an efficient glucose biosensor. The effect of the amount of GOx and magnetite present in the composite on the response of the biosensor was critically evaluated. The biosensors demonstrated to be highly selective, with negligible interference of ascorbic acid and uric acid. The proposed biosensor was challenged with human blood serum demonstrating an excellent correlation with the spectrophotometric method.  相似文献   

14.
Polyelectrolyte multilayers (PEMs) are now widely used for bioanalytical applications. In this work, a bilayer of poly(diallydimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) is consecutively adsorbed on 3-mercapto-1-propanesulfonic acid modified Au electrode surfaces, forming stable, ultrathin multilayer films. Subsequently, Prussian blue nanoparticles protected by PDDA (denoted as P-PB) and negatively charged glucose oxidase (GOx) are consecutively adsorbed onto the PSS-terminated bilayer. The growth of each of the P-PB/GOx bilayers is followed quantitatively using UV-visible absorption spectroscopy and the electrochemical method. The P-PB nanoparticles can catalyze the electroreduction of hydrogen peroxide formed from enzymatic reaction at lower potential and inhibit the responses of interferents, such as ascorbic acid (AA) and uric acid (UA). Performance of the multilayer films can be tailored by controlling the number of bilayers. Under optimal conditions, a linear range of 0.10 to 11.0 mM and a detection limit of 10 microM were achieved. The glucose biosensor has good stability and reproducibility.  相似文献   

15.
Ferric and copper hexacyanoferrates (PB and CuHCF, respectively) were electrodeposited on glassy carbon electrodes providing a suitable catalytic surface for the amperometric detection of hydrogen peroxide. Additionally glucose oxidase was immobilized on top of these electrodes to form glucose biosensors. The biosensors were made by casting glucose oxidase-Nafion layers onto the surface of the modified electrodes. The operational stability of the films and the biosensors were evaluated by injecting a standard solution (5 muM H(2)O(2) for PB, 5 mM H(2)O(2) for CuHCF and 2.5 mM glucose for both) over 5-10 h in a flow-injection system with the electrodes polarized at -50 (PB) and -200 mV (CuHCF) versus Ag/AgCl, respectively. The glucose biosensors demonstrated suitability for glucose determination: 0.0-2.5 mM (R(2)=0.9977) for PB and 0.0-10 mM (R(2)=0.9927) for CuHCF, respectively. The visualization of the redox catalyst modifiers (PB and CuHCF films) was presented by scanning electron micrographs.  相似文献   

16.
A Prussian Blue (PB) film modified disk ultramicroelectrode (UME) was fabricated by electrochemical deposition technique on a Pt-disk UME. The electrocatalytical reductions of hydrogen peroxide derived from glucose oxidase (GOD) on this modified UME were investigated. The enzymatic biochemical reactivity was imaged by scanning electrochemical microscopy (SECM) utilizing the PB film modified UME. It is evident that sensitivity and spatial resolution for hydrogen peroxide measurement were improved obviously. SECM images obtained clearly revealed the concentration profile of the reaction products around the enzymes. The PB film modified microelectrode is in the nature of simple preparation, high catalytic activity on hydrogen peroxide and substrate selectivity for SECM etc.  相似文献   

17.
A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages.  相似文献   

18.
A glassy carbon electrode was modified with β-manganese dioxide (β-MnO2), and glucose oxidase (GOx) was immobilized on its surface. The β-MnO2 nanowires were prepared by a hydrothermal method and characterized by scanning electron microscopy and powder X-ray diffraction. They were then dispersed in Nafion solution and cast on the glassy carbon electrode (GCE) to form an electrode modified with β-MnO2 nanowires that exhibits improved sensitivity toward hydrogen peroxide. If GOx is immobilized in the surface, the β-MnO2 acts as a mediator, and Nafion as a polymer backbone. The fabrication process was characterized by electrochemical impedance spectroscopy, and the sensor and its materials were characterized by cyclic voltammetry and amperometry. The biosensor enables amperometric detection of glucose with a sensitivity of 38.2 μA?·?mM?1?·?cm?2, and a response time of?<?5 s. This study also demonstrates the feasibility of realizing inexpensive, reliable, and high-performance biosensors using MnO2 nanowires.
Figure
The sensitive determination of glucose was realized at a β-MnO2 NWs modified glassy carbon electrode by amperometry. The relatively fast, reproducible and low-cost manufacturing procedure suggests that it can offer an excellent platform for glucose oxidase-biosensing applications.  相似文献   

19.
In this research a Hg2+ ion biosensor was developed by combining Prussian blue (PB) with glucose oxidase (GOx) – an enzyme that can be inhibited by Hg2+ ions. An application of PB in the design of Hg2+ ion biosensor enabled detecting changes in hydrogen peroxide reduction current at low operational potential of 0.2 vs Ag|AgCl,KClsat. The described Hg2+ ion biosensor exhibited wide linear range from 27 μM to 247 μM of Hg2+ and higher maximal detectable concentration of Hg2+ than other GOx inhibition-based biosensors, making it convenient for the analysis of samples with high concentration of Hg2+ ions.  相似文献   

20.
The ability to solubilize single-wall and multiwall carbon nanotubes (CNT) in the presence of the perfluorinated polymer Nafion is described. Such use of Nafion as a solubilizing agent for CNT overcomes a major obstacle for creating CNT-based biosensing devices. Their association with Nafion does not impair the electrocatalytic properties of CNT. The resulting CNT/Nafion modified glassy-carbon electrodes exhibit a strong and stable electrocatalytic response toward hydrogen peroxide. The marked acceleration of the hydrogen peroxide redox process is very attractive for the operation of oxidase-based amperometric biosensors, as illustrated for the highly selective low-potential (-0.05 V vs Ag/AgCl) biosensing of glucose. These findings open the door for using CNT in a wide range of chemical sensors and nanoscale electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号