首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
单分子流式检测仪的研制   总被引:1,自引:0,他引:1  
采用激光诱导荧光和流体动力学聚焦技术成功地研制出单分子流式检测仪, 实现了对水溶液中单个藻红蛋白及单个DNA分子片段的检测, 检测速率可达到每秒几十次. 与单分子荧光显微术相比, 流式分析将固定的标本台改为流动的单分子悬液, 大大提高了检测速率和统计精确性, 更加适合生物样品的快速、超高灵敏分析.  相似文献   

2.
We developed a method for the analysis of multiplexed double-stranded DNA (dsDNA) samples complexed to various intercalating dyes using entangled polymer solution. A commercial single-column capillary electrophoresis (CE) instrument with diode array detection was used for multiplexed detection of DNA samples by addition of intercalating fluorescent molecules. A Phi X174HinfI and a pGEM DNA ladder (1 mg/mL) were used for the electrophoretic separation of dsDNA fragments ranging in size from 24 to 726 and 36 to 2645 bp, respectively. The results suggested that simultaneous electrophoretic separation of different DNA ladders multiplexed with different dyes could be performed in the same capillary yielding fast DNA sizing separations. CE analysis, which is often overpowered by slab gel in sample throughput, could now overcome this disadvantage by allowing multiplexed sample analysis in a fraction of the time needed for slab gel analysis. The separation efficiency of stained DNA molecules with both dyes were dramatically improved with buffers containing a large cation such as tetrapentylammonium ion (Npe(4) (+)) as the only cation in the buffer.  相似文献   

3.
We report a new kind of electrochemical molecular beacon, termed “electrochemically active–inactive switching molecular beacon”, for direct detection of DNA in homogenous solution. The electrochemical molecular beacon consists of a stable stem-loop oligonucleotide carrying two carminic acid moieties (acting as electrochemical reporter) attached at its termini. In a close form, the electrochemical signal is quenched because two carminic acid moieties are close enough to associate into dimer. In the presence of the complementary DNA target, the electrochemical molecular beacon undergoes a conformational transformation from closed (hairpin) to open (linear) structure, which is associated with an increase in electrochemical signal. We found that the electrochemical molecular beacon is as effective as conventional molecular beacon in signaling the presence of complementary target and discriminating targets that differ by a single nucleotide. The proposed electrochemical molecular beacon has a great potential for investigating the interactions of DNA-protein and developing electrochemical real-time polymerase chain reaction.  相似文献   

4.
Determining the sizes and measuring the quantities of DNA molecules are fundamental tasks in molecular biology. DNA sizes are usually evaluated by gel electrophoresis, but this method cannot simultaneously size and quantitate a DNA at low zeptomole (zmol) levels of concentration. We have recently developed a new technique, called bare‐narrow‐capillary/hydrodynamic‐chromatography or BaNC‐HDC, for resolving DNA based on their sizes without using any sieving matrices. In this report, we utilize BaNC‐HDC for measuring the sizes and quantities of DNA fragments at zmol to several‐molecule levels of concentration. DNA ranging from a few base pairs to dozens of kilo base pairs are accurately sized and quantitated at a throughput of 15 samples per hour, and each sample contains dozens of DNA strands of different lengths. BaNC‐HDC can be a cost‐effective means and an excellent tool for high‐throughput DNA sizing and quantitation at extremely low quantity level.  相似文献   

5.
We demonstrate here the power and flexibility of free‐solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild‐type DNA. Here, four large drag‐tags are used to achieve free‐solution electrophoretic separation of 19 LDR products ranging in size from 42 to 66 nt that correspond to mutations in the K‐ras oncogene. LDR‐FSCE enabled electrophoretic resolution of these 19 LDR‐FSCE products by CE in 13.5 min (E = 310 V/cm) and by microchip electrophoresis in 140 s (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free‐solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR‐FSCE products were separated in less than 70 s with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K‐ras mutations on integrated “sample‐in/answer‐out” devices with amplification, LDR, and detection all on one platform.  相似文献   

6.
Liang D  Song L  Chen Z  Chu B 《Electrophoresis》2001,22(10):1997-2003
The effect of the separation medium in capillary electrophoresis consisting of a low-molecular-mass poly(N,N-dimethylacrylamide) (PDMA) solution on the DNA separation by adding a small amount of montmorillonite clay into the polymer matrix is presented. On the separation of the pBR322/HaeIII digest, both the resolution and the efficiency were increased by adding 2.5-5.0 x 10(-5) g/mL clay into the 5% w/v PDMA with a molecular mass of only 100 K. Moreover, there was no increase in the migration time of DNA fragments. Similar results were observed by using a C-terminated pGEM-3Zf(+) sequencing DNA sample in a sequencing buffer. Experimental data also showed that the addition of clay increased the viscosity of the polymer solution. We attribute this effect to the structural change of the polymer matrix caused by the exfoliated clay sheets, whereby the thin clay sheets function like a "dynamic cross-linking plate" for the PDMA chains and effectively increase the apparent molecular mass of PDMA.  相似文献   

7.
In this commentary, we focused our attention on capillary electrophoresis. It achieves the efficient separation of molecular species by the application of high voltages to samples in solution. Actually, capillary electrophoresis can be performed on microchip devices, based on an automated and miniaturized electrophoresis system, based on lab‐on‐a‐chip technology. By this technology it is possible to separate nucleic acid fragments (DNA or RNA) with respect to sizing accuracy and sizing resolution. Currently, two automated capillary electrophoresis on microchips devices are available: the Agilent 2100 Bioanalyzer and the Experion? Automated Electrophoresis System. In this study, we evaluated if the CE is able to distinguish the three uridine diphosphate glucuronosyltransferase 1A1 TATA‐box genotypes.  相似文献   

8.
宋立国  陈洪  张乐  程介克 《色谱》1999,17(4):379-382
通过理论推导和实验验证表明;适当稀释DNA样品溶液,采用流体力学进样或电动进样都不会较大地减低峰高,而DNA片段毛细管电泳的分离效率和分离度还能有所提高。采用稀释样品的方法可提高DNA样品的使用效率。采用羟乙基纤维素无胶筛分介质分离了DNA片段。用激光诱导荧光(氩离子激光器,488nm)电荷耦合器件检测。用低浓度的筛分介质(0.4%)分离了分子质量较大的ADNA-HindⅢ全部8个片段(12bp~23130bP)。用高浓度的筛分介质(1.6%)分离分子质量较小的pBR322-HaeⅢ22个片段(18bp~587bp)。  相似文献   

9.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

10.
We have fabricated a highly sensitive, simple and label‐free single polypyrrole (Ppy) nanowire based conductometric/chemiresistive DNA sensor. The fabrication was optimized in terms of probe DNA sequence immobilization using a linker molecule and using gold‐thiol interaction. Two resultant sensor designs working on two different sensing mechanisms (gating effect and work function based sensors) were tested to establish reliable sensor architecture with higher sensitivity and device‐to‐device reproducibility. The utility of the work function based configuration was demonstrated by detecting 19 base pair (bp) long breast cancer gene sequence with single nucleotide polymorphism (SNP) discrimination with high sensitivity, lower detection limit of ∼10−16 M and wide dynamic range (∼10−16 to 10−11 M) in a small sample volume (30 µL). To further demonstrate the utility of the DNA sensor for detection of target sequences with different number of bases, targets with 21 and 36 bases were detected. These sequences have implications in environmental sample analysis or metagenomics. Sensor response showed increase with the number of bases in the target sequence. For long sequence (with 36 bases), effect of DNA alignment on sensor performance was studied.  相似文献   

11.
Pyrene labeled pyrrolocytidine was incorporated into an oligonucleotide to construct ends free and self-quenched molecular beacon in which the fluorophore containing pyrrolocytidine was placed in the middle of the stem and used for the detection of a target DNA with an excellent efficiency.  相似文献   

12.
A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex‐forming molecular beacon and a stem‐forming DNA component that is modified with a host–guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α‐hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point‐of‐care diagnostics with a portable nanopore kit in the future.  相似文献   

13.
Rapid separation of nucleic acids by microchip electrophoresis could streamline many biological applications, but conventional chip injection strategies offer limited sample stacking, and thus limited sensitivity of detection. We demonstrate the use of photopatterned polyacrylamide membranes in a glass microfluidic device, with or without fixed negative charges, for preconcentration of double-stranded DNA prior to electrophoretic separation to enhance detection limits. We compared performance of the two membrane formulations (neutral or negatively charged) as a function of DNA fragment size, preconcentration time, and preconcentration field strength, with the intent of optimizing preconcentration performance without degrading the subsequent electrophoretic separation. Little size-dependent bias was observed for either membrane formulation when concentrating dsDNA > 100 bp in length, while the negatively charged membrane more effectively blocks passage of single-stranded oligonucleotide DNA (20-mer ssDNA). Baseline resolution of a six-band dye-labeled ladder with fragments 100-2000 bp in size was obtained in <120 s of separation time, with peak efficiencies in the range of 2000-15,000 plates/cm, and detection limits as low as 1 pM per single dye-labeled fragment. The degree of preconcentration is tunable by at least 49-fold, although the efficiency of preconcentration was found to have diminishing returns at high field and/or long times. The neutral membrane was found to be more robust than the negatively charged membrane, with approximately 2.5-fold larger peak area during the subsequent separation, and less decrease in resolution upon increasing the preconcentration field strength.  相似文献   

14.
Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring.  相似文献   

15.
A thermo-responsive separation matrix, consisting of Pluronic F127 tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide), was used to separate DNA fragments by microchip electrophoresis. At low temperature, the polymer matrix was low in viscosity and allowed rapid loading into a microchannel under low pressure. With increasing temperatures above 25°C, the Pluronic F127 solution forms a liquid crystalline phase consisting of spherical micelles with diameters of 17–19 nm. The solution can be used to separate DNA fragments from 100 bp to 1500 bp on poly(methyl methacrylate) (PMMA) chips. This temperature-sensitive and viscosity-tunable polymer provided excellent resolution over a wide range of DNA sizes. Separation is based on a different mechanism compared with conventional matrices such as methylcellulose. To illustrate the separation mechanism of DNA in a Pluronic F127 solution, DNA molecular imaging was performed by fluorescence microscopy with F127 polymer as the separation matrix in microchip electrophoresis. Figure Temperature dependence of the viscosity of 20% w/w Pluronic F127 solution in 1xTBE buffer. Dotted approximates resultant curve.  相似文献   

16.
分子信标用于核酸连续复制过程的体外实时监测   总被引:1,自引:1,他引:0  
利用分子信标核酸探针实时监测了核酸连续复制过程. 分子信标不仅作为模板参与复制反应, 而且同步将复制过程的信息转换为荧光信号, 实现复制过程的体外实时监测. 该方法不仅为DNA复制检测提供了一种实时研究手段, 而且为核酸复制动力学及与复制相关疾病的深入研究提供了一种新的思路.  相似文献   

17.
Luo Y  Zhang Q  Qin J  Lin B 《Electrophoresis》2007,28(24):4769-4771
Hydrostatic pressure sample injection method is able to minimize the number of electrodes needed for a microchip electrophoresis process; however, it neither can be applied for electrophoretic DNA sizing, nor can be implemented on the widely used single-cross microchip. This paper presents an injector design that makes the hydrostatic pressure sample injection method suitable for DNA sizing. By introducing an assistant channel into the normal double-cross injector, a rugged DNA sample plug suitable for sizing can be successfully formed within the cross area during the sample loading. This paper also demonstrates that the hydrostatic pressure sample injection can be performed in the single-cross microchip by controlling the radial position of the detection point in the separation channel. Rhodamine 123 and its derivative as model sample were successfully separated.  相似文献   

18.
Sen YH  Jain T  Aguilar CA  Karnik R 《Lab on a chip》2012,12(6):1094-1101
Nanofluidic sensing elements have been the focus of recent experiments for numerous applications ranging from nucleic acid fragment sizing to single-molecule DNA sequencing. These applications critically rely on high measurement fidelity, and methods to increase resolution are required. Herein, we describe fabrication and testing of a nanochannel device that enhances measurement resolution by performing multiple measurements (>100) on single DNA molecules. The enhanced measurement resolution enabled length discrimination between a mixture of λ-DNA (48.5 kbp) and T7 DNA (39.9 kbp) molecules, which were detected as transient current changes during translocation of the molecules through the nanochannel. As long DNA molecules are difficult to resolve quickly and with high fidelity with conventional electrophoresis, this approach may yield potentially portable, direct electrical sizing of DNA fragments with high sensitivity and resolution.  相似文献   

19.
建立了基于相对迁移时间比例的方法,依据待侧DNA片段相对于上位及下位内标的迁移时间比例进行长度预测。实验结果显示,DNA片段的相对迁移时间比例在不同分析条件下具有良好的重现性。通过建立相对迁移时间比例相对于DNA片段长度的对应关系公式,实现了芯片瞬间等速电泳条件下DNA片段长度的准确预测。实际样品分析证实这种基于相对迁移时间比例的计算方法简单可靠,适合于芯片tITP-CGE分析中DNA长度的精确判定。  相似文献   

20.
We have developed a novel high-resolution separation technique of DNA fragments in a heterogeneous combination of a sample buffer and a separation buffer. The use of a heterogeneous buffer combination is a simple method for on-line concentration of DNA fragments, in which a sample buffer is simply exchanged with one including taurine anions. The mobility of taurine anions, co-ions for DNA, is lower than the that of acetate anions in a separation buffer. The difference in the mobility invokes transient isotachophoresis. The current technique allows DNA fragments to be effectively concentrated and the separation length of microchips to be shorter than that of conventional ones by a factor of three without deterioration in separation resolution and any modification of a chip design. Fragments of 100-bp DNA ladders (100-1000 bp) were separated with high resolution (0.72-10.7) within 60 s with a 10 mm separation length on a polymethyl methacrylate chip. Furthermore, fragments of 10-bp DNA ladders (10-330 bp) were separated with high resolution (0.69-2.00) with a 10 mm separation length within 50 s without band broadening. The current achievements will make it possible to fabricate compact devices for microchip electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号