首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptolidin is a natural product that selectively induces apoptosis in several cancer cell lines. Apoptosis, programmed cell death, is a biological key pathway for regulating homeostasis and morphogenesis. Apoptotic misregulations are connected with several diseases, in particular cancer. The extrinsic way to apoptosis leads through death ligands and death receptors to the activiation of the caspase cascade, which results in proteolytic degradation of the cell architecture. The intrinsic pathway transmits signals of internal cellular damage to the mitochondrion, which loses its structural integrity, and forms an apoptosome that initiates the caspase cascade. Compounds which regulate apoptosis are of high medical significance. Many natural products regulate apoptotic pathways, and apoptolidin is one of them. The known synthetic routes to apoptolidin are described and compared in this Review. Selected further natural products which regulate apoptosis are introduced briefly.  相似文献   

2.
This study was designed to investigate the effects of the prenylated flavonoid kurarinone on TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis and its underlying mechanism. A low dose of kurarinone had no significant effect on apoptosis, but this compound markedly promoted tumor cell death through elevation of Bid cleavage, cytochrome c release and caspase activation in HeLa cells treated with TRAIL. Caspase inhibitors inhibited kurarinone-mediated cell death, which indicates that the cytotoxic effect of this compound is mediated by caspase-dependent apoptosis. The cytotoxic effect of kurarinone was not associated with expression levels of Bcl-2 and IAP family proteins, such as Bcl-2, Bcl-xL, Bid, Bad, Bax, XIAP, cIAP-1 and cIAP-2. In addition, this compound did not regulate the death-inducing receptors DR4 and DR5. On the other hand, kurarinone significantly inhibited TRAIL-induced IKK activation, IκB degradation and nuclear translocation of NF-κB, as well as effectively suppressed cellular FLICE-inhibitory protein long form (cFLIPL) expression. The synergistic effects of kurarinone on TRAIL-induced apoptosis were mimicked when kurarinone was replaced by the NF-κB inhibitor withaferin A or following siRNA-mediated knockdown of cFLIPL. Moreover, cFLIP overexpression effectively antagonized kurarinone-mediated TRAIL sensitization. These data suggest that kurarinone sensitizes TRAIL-induced tumor cell apoptosis via suppression of NF-κB-dependent cFLIP expression, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.  相似文献   

3.
Conventional photodynamic therapy with aminolevulinate (ALA‐PDT) selectively induces apoptosis in diseased cells and is highly effective for treating actinic keratoses. However, similar results are achieved only in a subset of patients with cutaneous T‐cell lymphoma (CTCL). Our previous work shows that the apoptotic resistance of CTCL correlates with low expression of death receptors like Fas cell surface death receptor (FAS), and that methotrexate upregulates FAS by inhibiting the methylation of its promoter, acting as an epigenetic derepressor that restores the susceptibility of FAS‐low CTCL to caspase‐8‐mediated apoptosis. Here, we demonstrate that methotrexate increases the response of CTCL to ALA‐PDT, a concept we refer to as epigenetically enhanced PDT (ePDT). Multiple CTCL cell lines were subjected to conventional PDT versus ePDT. Apoptotic biomarkers were analyzed in situ with multispectral imaging analysis of immunostained cells, a method that is quantitative and 5× more sensitive than standard immunohistology for antigen detection. Compared to conventional PDT or methotrexate alone, ePDT led to significantly greater cell death in all CTCL cell lines tested by inducing greater activation of caspase‐8‐mediated extrinsic apoptosis. Upregulation of FAS and/or tumor necrosis factor‐related apoptosis‐inducing ligand pathway components was observed in different CTCL cell lines. These findings provide a rationale for clinical trials of ePDT for CTCL.  相似文献   

4.
Ginsenoside Rh2 Showing Ability to Induce Apoptosis in HeLa Cells   总被引:1,自引:0,他引:1  
IntroductionApoptosis( programmed cell death,PCD) hasbeen shown to play an important role in multiplephysiological and pathological processes,such asembryonic development,homeostatic maintenanceof tissues and organs,maturation of the immunesystem,neurologic degeneration,autoimmune andinflammatory disease,atherosclerosis,oncogenesisand tumor progression[1— 4] .Ginsenoside G- Rh2 iso-lated from Panax ginseng belongs to protopanaxa-diol dammarene glycoside[5] .G- Rh2 has a suppres-sive effect…  相似文献   

5.
Inhibition of c-Jun N-terminal kinase (JNK) with the pharmacologic inhibitor SP600125 in UVA-irradiated HaCaT cells and human primary keratinocytes resulted in dramatic phenotypic changes indicative of cell death. These phenotypic changes correlated with caspase 8, 9 and 3 activations as well as cleavage of the caspase substrate polyADP-ribose polymerase (PARP). Morphologic analysis and analysis of sub-G0 DNA content confirmed apoptotic cell death in these keratinocytes after combination treatment. Addition of the general caspase inhibitor zVAD-fmk to combination-treated HaCaT cells was able to completely block caspase activation, PARP cleavage, the increase in sub-G0 DNA content and the classic morphologic features of apoptosis, indicating that this combination treatment resulted in caspase-dependent apoptotic cell death. zVAD-fmk treatment of primary keratinocytes was able to completely inhibit caspase activation and PARP cleavage, reduce morphologic apoptosis at lower concentrations of SP600125 and decrease the sub-G(0) DNA content detected after UVA + SP600125 treatment. However, cell death and a significant amount of debris was still detected after caspase inhibitor treatment, particularly with 125 nM SP600125. At subconfluent conditions and low passage, primary keratinocytes were more sensitive to UVA irradiation alone than HaCaT cells. In conclusion, we have observed that inhibition of UVA-induced JNK activity with the pharmacologic inhibitor SP600125 resulted in caspase-dependent apoptotic cell death in both the immortalized keratinocyte cell line HaCaT and primary keratinocytes. However, the increased sensitivity of primary keratinocytes to experimental stress may have also resulted in direct cellular injury and caspase-independent cell death.  相似文献   

6.
Recent observations indicate that the resistance of apoptosis is an important process of tumor metastasis and metastases are the cause of 90% of human cancer death. Etoposide, a semisynthetic derivative of the podophyllotoxins, is a clinically used anti-cancer reagent, but the effects of it on metastatic gastric carcinoma cells are totally unknown. In this study, etoposide induced apoptotic cell death in human gastric adenocarcinoma cell line SGC-7901, derived from metastatic lymph nodes, as evidenced by the analysis of DNA fragmentation, apoptotic body formation, caspase activation, and apoptosis specific changes in cell morphology is demonstrated. The depolarization of mitochondrial membrane and the release of cytochrome c were most early events in etoposide treated SGC-7901 cells, and were followed by caspase-3 activation and PARP cleavage. Caspase-8 activation was not detected under the same condition. Thus, it was proposed that etoposide induces caspase-associated apoptotic cell death in human metastatic gastric carcinoma, which is initiated by mitochondrial cytochrome c release.  相似文献   

7.
Cyclopentenone prostaglandins (PGs) have antiproliferative activity on various tumor cell growth in vitro. Particularly, 9-deoxy-delta(9,12)-13,14-dihydro PGD(2) (delta(12)-PGJ(2)) was reported for its antineoplastic and apoptotic effects on various cancer cells, but its mechanism inducing apoptosis is still not clear. In this study, we have characterized apoptosis induced by delta(12)-PGJ(2) in HeLa cells. Treatment of delta(12)-PGJ(2) induced apoptosis as indicated by DNA fragmentation, chromatin condensation, and formation of apoptotic body. We also observed release of cytochrome c from mitochondria and activation of caspase cascade including caspase-3, -8, and -9. And the pan-caspase inhibitor z-Val-Ala-Asp (OMe) fluoromethyl-ketone (z-VAD-fmk) and Q-Val-Asp (OMe)-CH(2)-OPH (Q-VD (OMe)-OPH) prevented cell death induced by delta(12)-PGJ(2) showing participation of caspases in this process. However, protein expression level of Bcl-2 family was not altered by delta(12)-PGJ(2), seems to have no effect on HeLa cell apoptosis. And ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase 8 indicating that Fas receptor-ligand interaction was not involved in this pathway. Treatment of delta(12)-PGJ(2) also leads to suppression of nuclear factor kappaB (NF-kappaB) as indicated by nuclear translocation of p65/RelA and c-Rel and its DNA binding ability analyzed by EMSA. Taken together, our results suggest that delta(12)-PGJ(2)-induced apoptosis in HeLa cell utilized caspase cascade without Fas receptor-ligand interaction and accompanied with NF-kappaB inactivation.  相似文献   

8.
To evaluate the role of salidroside on proliferation,apoptosis and invasiveness of salivary gland adenoid cystic carcinoma cells(SACC),immunocytochemical staining was employed to detect proliferating cell nuclear antigen(PCNA),caspase 3 and caspase 8 expression in SACC-2 cells.Modified Boyden chamber assay combined with laser confocal microscopy(LSCM) was used to evaluate the invasion and migration abilities of SACC-2 cells at different time point.Immunohistochemistry staining revealed that the expression of PCNA was significantly decreased(P0.01) after salidroside treatment.In contrast,salidroside treatment led to increased caspase 3 and caspase 8 in SACC-2 cells.Cell migration depth and number of cells that penetrated Boyden chamber were also decreased by salidroside.Salidroside potently inhibits the proliferation and simultaneously induces the apoptosis of SACC-2 cells.Migration and invasion of SACC-2 cells are also inhibited.Our data throw light on potential clinical application of salidroside to the patients with SACC.  相似文献   

9.
BACKGROUND: The caspase-mediated proteolysis of many cellular proteins is a critical event during programmed cell death or apoptosis. It is important to determine which caspases are activated in mammalian cells, and where and when activation occurs, upon receipt of specific death stimuli. Such information would be useful in the design of strategies to regulate the activation of caspases during apoptosis. RESULTS: We developed two novel fluorescent substrates that were specifically cleaved by caspase-1 or caspase-3. For in vitro studies, four-amino-acid recognition sequences, YVAD for caspase-1 and DEVD for caspase-3, were introduced between blue fluorescent protein (BFP) and green fluorescent protein (GFP), expressed in bacteria and purified. For in vivo studies, YVAD and DEVD were introduced between cyan fluorescent protein and yellow fluorescent protein, and expression was monitored in live mammalian cells. The proximity between fluorophores was determined using fluorescence resonance energy transfer. Purified substrates were cleaved following exposure to purified caspase-1 and caspase-3. In Cos-7 cells, caspase-1 and caspase-3 substrates were cleaved upon induction of apoptosis with staurosporine, a protein-kinase inhibitor, whereas caspase-3 but not caspase-1 substrate was cleaved upon treatment of cells with the DNA-damaging agent mitomycin c. CONCLUSIONS: These substrates allow the spatial activation of specific members of the caspase family to be deciphered during the initiation and execution phase of programmed cell death, and allow activation of specific caspases to be monitored both in vivo and in vitro. This technology is also likely to be useful for high-throughput screening of reagents that modulate caspase activity.  相似文献   

10.
11.
The mechanism of cell death by pheophorbide a (Pba) which has been established to be a potential photosensitizer was examined in experimental photodynamic therapy (PDT) on Jurkat cells, a human lymphoid tumor cell line. In 30-60 min after irradiation, Pba treated cells exhibited apoptotic features including membrane blebbing and DNA fragmentation. Pba/PDT caused a rapid release of cytochrome c from mitochondria into the cytosol. Sequentially, activation of caspase-3 and the cleavage of poly ADP-ribose polymerase (PARP) were followed. Meanwhile, no evidence of activation of caspase-8 was indicated in the cells. In experiments with caspase inhibitors, it was found that caspase-3 alone was sufficient initiator for the Pba-induced apoptosis of the cells. Pba specific emission spectra were confirmed in the mitochondrial fraction and the light irradiation caused a rapid change in its membrane potential. Thus, mitochondria were entailed as the crucial targets for Pba as well as a responsible component for the cytochrome c release to initiate apoptotic pathways. Taken together, it was concluded that the mode of Jurkat cell death by Pba/PDT is an apoptosis, which is initiated by mitochondrial cytochrome c release and caspase-3-pathways.  相似文献   

12.
Potent photosensitizers hypocrellin A (HA), hypocrellin B (HB) and hypericin (HY) are lipid-soluble perylquinone derivatives of the genus Hypericum and have a strong photodynamic effect on tumors and viruses. However, the mechanisms of tumor cell death induced by HA, HB and HY are still unclear. Moreover, no reports have mentioned cell apoptosis induced by HA, HB and HY in human nasopharyngeal carcinoma (NPC) and other mucosal cells. In this study, we attempt to clarify the photodynamic effects of HA, HB and HY compounds in poorly differentiated (CNE2) and moderately differentiated (TW0-1) human NPC cells as well as human mucosal colon and bladder cells. Using these cell lines we investigated few hallmarks of apoptotic commitments in a drug dose dependent manner. Tumor cells photo-activated with HA, HB and HY showed cell size shrinkage and an increase in the sub-diploid DNA content. A loss of membrane phospholipid asymmetry associated with apoptosis was induced by all tumor cell lines as evidenced by the externalization of phosphatidylserine. Under apoptotic conditions, Western blot analysis of poly(ADP-ribose) polymerase, a caspases substrate, showed the classical cleavage pattern (116 to 85 kDa) associated with apoptosis in HA, HB and HY-treated cell lysates. In addition, 85 kDa cleaved product was blocked by the tetrapepdide caspase inhibitors such as DEVD-CHO or z-VAD-fmk. Both inhibitors protect tumor cells from apoptosis. These results demonstrate that tumor cell death induced by HA, HB and HY is mediated by caspase proteases. This study also identifies HB as a more potent and promising photosensitizer for the treatment of mucosal cancer cells.  相似文献   

13.
Epidemiological, preclinical and clinical studies have supported the role of selenocompounds as potential cancer chemopreventive and chemotherapeutic agents. In this study, a novel selenophene-based compound, 1,4-diselenophene-1,4-diketone (DSeD), has been synthesized by Double Friedel-Crafts reaction and identified as a potent antiproliferative agent against a panel of six human caner cell lines. Despite this potency, DSeD was relatively nontoxic toward human normal cells, HS68 fibroblasts and HK-2 kidney cells. These results suggest that DSeD possesses great selectivity between cancer and normal cells. Induction of apoptosis in human melanoma A375 cells by DSeD was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Activation of caspase-9 and depletion of mitochondrial membrane potential indicated the initiation of the mitochondria-mediated apoptosis pathway. Pretreatment of cells with general caspase inhibitor z-VAD-fmk and caspase-9 inhibitor z-LEHD-fmk significantly suppressed the cell apoptosis, demonstrating the important roles of caspase and mitochondria in DSeD-induced apoptotic cell death. Furthermore, DSeD-induced apoptosis was found independent of reactive oxygen species generation. Taken together, our results suggest that DSeD induces caspase-dependent apoptosis in A375 cells through activation of mitochondria-mediated apoptosis pathway.  相似文献   

14.
G protein-coupled receptors (GPCRs) are core switches connecting excellular survival or death signals with cellular signaling pathways in a context-dependent manner. Opsin 3 (OPN3) belongs to the GPCR superfamily. However, whether OPN3 can control the survival or death of human melanocytes is not known. Here, we try to investigate the inherent function of OPN3 on the survival of melanocytes. Our results demonstrate that OPN3 knockdown by RNAi-OPN3 in human epidermal melanocytes leads to cell apoptosis. The downregulation of OPN3 markedly reduces intracellular calcium levels and decreases phosphorylation of BAD. Attenuated BAD phosphorylation and elevated BAD protein level alter mitochondria membrane permeability, which trigger activation of BAX and inhibition of BCL-2 and raf-1. Activated BAX results in the release of cytochrome c and the loss of mitochondrial membrane potential. Cytochrome c complexes associate with caspase 9, forming a postmitochondrial apoptosome that activate effector caspases including caspase 3 and caspase 7. The release of apoptotic molecules eventually promotes the occurrence of apoptosis. In conclusion, we hereby are the first to prove that OPN3 is a key signal responsible for cell survival through a calcium-dependent G protein-coupled signaling and mitochondrial pathway.  相似文献   

15.
Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.  相似文献   

16.
We made fusion protein of fastatin and FIII 9-10, termed tetra-cell adhesion molecule (T-CAM) that can interact simultaneously with alphavbeta3 and alpha5beta1 integrins, both playing important roles in tumor angiogenesis. T-CAM can serve as a cell adhesion substrate mediating adhesion and migration of endothelial cells in alphavbeta3 and alpha5beta1 integrin-dependent manner. T-CAM showed pronounced anti-angiogenic activities such as inhibition of endothelial cell tube formation, endothelial cell proliferation, and induction of endothelial cell apoptosis. T-CAM also inhibited angiogenesis and tumor growth in mouse xenograft model. The anti-angiogenic and anti-tumoral activity of molecule like fastatin could be improved by fusing it with integrin-recognizing cell adhesion domain from other distinct proteins. The strategy of combining two distinct anti-angiogenic molecules or cell adhesion domains could facilitate designing improved anticancer agent of therapeutic value.  相似文献   

17.
This study was carried out to investigate the anti‐tumor effect and mechanism of hiporfin‐mediated photodynamic therapy (hiporfin‐PDT) in osteosarcoma. We found that hiporfin accumulated mainly in the cytoplasm of osteosarcoma cells in a time and concentration‐dependent manner. Hiporfin‐PDT inhibited the proliferation, induced apoptosis and produced cell cycle arrest at G2M in osteosarcoma cell lines. Hiporfin‐PDT increased the expression of cleaved‐caspase‐3, cleaved PARP‐1, Bax and RIP1 while it decreased the expression of Bcl‐2; in addition, low concentration of hiporfin increased LC3 conversion. Furthermore, cell death caused by hiporfin‐PDT could be rescued by Nec‐1 but not by Z‐VAD‐FMK. Production of reactive oxygen species was increased after hiporfin‐PDT. In vivo studies showed a significant decrease in tumor volume and weight after hiporfin‐PDT in all three tumor mouse models investigated (subcutaneous and orthotopic). Histological analysis showed widespread cell apoptosis and necrosis after treatment. Immunohistochemistry also showed upregulation of cleaved‐caspase‐3 and downregulation of Bcl‐2 after hiporfin‐PDT. These results indicate that hiporfin‐PDT exhibits a killing effect in osteosarcoma both in vitro and in vivo, which is associated with apoptosis and necroptosis, while autophagy plays a protective role. All these findings shed light on a potential future clinical use for hiporfin in the treatment of osteosarcoma.  相似文献   

18.
This study was conducted to determine the effect of Cephalotaxus griffithii needle essential oil (CGNO) on proliferation and migration of human cervical cancer (HCC) cells. CGNO treatment decreased the viability of all the tested HCC (HeLa, ME-180 and SiHa) cells. Morphological and DNA fragmentation analysis of CGNO-treated HeLa cells indicated the involvement of apoptosis in inducing HCC cell death. CGNO increased mitochondrial membrane depolarisation and upregulated the expression of caspase-9, caspase-8, caspase-3 and cleaved-PARP. The activity of caspase-8 and caspase-9 was also significantly increased. Wound healing and transwell migration assay demonstrated that CGNO significantly inhibited the migration of HeLa cells to close a scratched wound and also inhibited their migration through filter towards a chemotactic stimulus. Taken together, these results indicated that CGNO inhibited the proliferation and migration of HCC cells. Of note, CGNO induced HeLa cell death through mitochondria-initiated and death receptor-mediated apoptosis pathway.  相似文献   

19.
Photodynamic therapy (PDT) of cancer is a very promising technique based on the formation of singlet oxygen induced by a sensitizer after irradiation with visible light. The stimulation of tumor growth by nitric oxide (NO) was reported recently, and NO was shown to have a protective effect against PDT-induced tumor death. We investigated a putative direct effect of NO on tumor cell death induced by PDT, using the human lymphoblastoid CCRF-CEM cells and bisulfonated aluminum phthalocyanine (AlPcS2) as a sensitizer. Cells were incubated with AlPcS2 in the presence or absence of NO donors ((Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, hydroxylamine and S-nitroso-N-acetylpenicillamine) or L-arginine. Under these conditions, in the absence of NO donors or L-arginine the cells died rapidly by apoptosis upon photosensitization. In the presence of NO donors or L-arginine, apoptotic cell death after photosensitization was significantly decreased. Modulation of cell death by NO was not due to S-nitrosylation of caspases and occurred at the level or upstream of caspase-9 processing. The protective effect of NO was reversed by incubating the cells with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of guanylyl cyclase, or with KT5823, an inhibitor of protein kinase G (PKG). Incubation with 8-bromo-cyclic guanosine monophosphate, a membrane permeable cyclic guanosine monophosphate analog, also decreased cell death induced by PDT. Although the protective effect of NO against apoptotic cell death in several models has been attributed to an increase in the expression of heme oxygenase-1, heat shock protein 70 or Bcl-2, this was not the case under our experimental conditions. These results show that NO decreases the extent of apoptotic cell death after PDT treatment through a PKG-dependent mechanism, upstream or at the level of caspase activation.  相似文献   

20.
Some fatty acids and derivatives are known to induce cell death in cancer cells. Mitochondria may have important roles in the death process. Therefore, we investigated the mitochondrial contribution in cell death induced by a modified fatty acid, tetradecylthioacetic acid (TTA), which cannot be beta-oxidized. TTA treatment induced apoptosis in IPC-81 leukemia cells via depolarization of the mitochondrial membrane potential (deltapsi) and early release of cytochrome c, accompanied by depletion of mitochondrial glutathione. Caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP) occurred at a late stage, but the broad-spectra caspase inhibitor zVAD-fmk did not block TTA-induced apoptosis. Overexpression of Bcl-2 partially prevented TTA-induced apoptosis, whereas cAMP-induced cell death was completely blocked. In conclusion, TTA seems to trigger apoptosis through mitochondrial-mediated mechanisms and selective modulation of the mitochondrial redox equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号