首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of pure methane in activated carbon Ecosorb was studied by combining grand canonical ensemble Monte Carlo molecular simulations and an experimental approach based on a gravimetric device. Experimental and calculated adsorption isotherms of methane were determined in supercritical conditions at 303.15 and 353.15 K and pressures up to 10 MPa. The comparison between both experimental and estimated data proves the consistency of the methodology used in this work, starting from the characterization of the porous media in terms of pore size distribution, the determination of the experimental adsorption isotherms, and the final estimation of computational results through estimated isotherms determination. Moreover, additional differential enthalpy of adsorption calculations were compared with experimental values obtained by means of a manometric/calorimetric technique. The good agreement shows the strength and the originality of this paper by combining experimental and computational homemade results allowing a complete characterization of the activated carbon substrate and its methane storage capacity.  相似文献   

2.
We report experimental measurements of the isosteric heats of adsorption for argon and nitrogen in two microporous saccharose-based carbons, using a Tian-Calvet microcalorimeter. These data are used to test recently developed molecular models of these carbons, obtained by a constrained reverse Monte Carlo method. Grand canonical Monte Carlo simulation is used to calculate the adsorption isotherms and isosteric heats for these systems, and the results for the latter are compared to the experimental data. For argon, excellent quantitative agreement is obtained over the entire range of pore filling. In the case of nitrogen, very good agreement is obtained over the range of coverage 0.25 < or = gamma/gamma 0 < or = 0.85, but discrepancies are observed at lower and higher coverages. The discrepancy at low coverage may be due to the presence of oxygenated groups on the pore surfaces, which are not taken into account in the model. The differences at high coverage are believed to arise from the presence of a few mesopores, which again are not included in the model. Pair correlation functions (argon-carbon and argon-argon) are determined from the simulations and are discussed as a function of pore filling. Snapshots of the simulations are presented and provide a picture of the pore filling process.  相似文献   

3.
A distinct step in the isotherm occurs during the adsorption of CO2 on MIL-53 at 304 K. Such behavior is neither observed during the adsorption of CH4 on MIL-53 nor during the adsorption on the isostructural MIL-47. This phenomenon seems to be due to a different mechanism than that of previous adsorption steps on MOF samples. It is suggested that a breathing behavior is induced in MIL-53 during CO2 adsorption.  相似文献   

4.
This work performs a systematic computational study toward a molecular understanding of the separation characteristics of metal-organic frameworks (MOFs), for which the purification of synthetic gas by two representative MOFs, MOF-5 and Cu-BTC, is adopted as an example. The simulations show that both geometry and pore size affect largely the separation efficiency, complex selectivity behaviors with different steps can occur in MOFs, and the electrostatic interactions that exist can enhance greatly the separation efficiency of gas mixtures composed of components with different chemistries. Furthermore, the macroscopic separation behaviors of the MOF materials are elucidated at a molecular level to give insight into the underlying mechanisms. The findings as well as the molecular-level elucidations provide useful microscopic information toward a complete understanding of the separation characteristics of MOFs that may lead to general design strategies for synthesizing new MOFs with tailored properties, as well as guiding their practical applications.  相似文献   

5.
A constricted slit model was introduced to improve, one step further, the performance of the simple slit model in prediction of the adsorption and diffusion behavior of simple molecules in the nanoporous carbons (NPCs). The grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations are performed to study the adsorption and diffusion behavior of methane within the constricted slit models. The models are called slit-1, 2, and 3 with constriction heights 5, 7, and 9 Å respectively. For comparison, we used the slit-0 name for the simple slit without constriction. Adsorption results show that at low pressures, the constriction increases the adsorbed amount irrespective of its height. Slit-2 with a constriction height as a molecular diameter has the greatest heat of adsorption and has highest loading at pressures up to 3,000 kPa. At high pressures, when all pores are filled, the adsorption trend is in line with the pore volumes of slits where slit-0 with higher pore volume is dominant. The density profiles in the models were calculated and examined. The spatial distribution of adsorbed methane molecules was examined by various radial distribution functions calculated by MD. Also, MD simulation results show that the diffusion coefficient of methane decreases in constricted slits. The calculated diffusion coefficients in slit-2 in the direction of the constriction are one order of magnitude smaller than the calculated one in the simple slit model but it is far from the experimental values in the NPCs.  相似文献   

6.
Measurements of water adsorption equilibrium in a carbon molecular sieve are undertaken in order to gain insight into the nature of water adsorption in carbon micropores. The measurements are taken at low concentrations to emphasize the role of oxygen-containing functional groups in the adsorption of water. Comparisons are made with previously published water adsorption data at higher concentrations to provide a data set spanning a wide range of loading. The assembled data set provides an opportunity for comparison of various theories for prediction of water adsorption in carbon micropores. Shortcomings of current theories are outlined, and an analytical theory that is free of these deficiencies is proposed in this investigation. With the consideration of micropore volume and pore size distribution, the experimental data and proposed isotherm model are consistent with previous studies of Takeda carbon molecular sieves. Also investigated is the uptake kinetics of water, which is characterized by a Fickian diffusion mechanism. The Maxwell-Stefan formulation is applied to characterize the dependence of the diffusional mobility upon loading.  相似文献   

7.
In this work, porous carbons with well-developed pore structures were directly prepared from a weak acid cation exchange resin (CER) by the carbonization of a mixture with Mg acetate in different ratios. The effect of the Mg acetate-to-CER ratio on the pore structure and CO(2) adsorption capacities of the obtained porous carbons was studied. The textural properties and morphologies of the porous carbons were analyzed via N(2)/77K adsorption/desorption isotherms, SEM, and TEM, respectively. The CO(2) adsorption capacities of the prepared porous carbons were measured at 298 K and 1 bar and 30 bar. By dissolving the MgO template, the porous carbons exhibited high specific surface areas (326-1276 m(2)/g) and high pore volumes (0.258-0.687 cm(3)/g). The CO(2) adsorption capacities of the porous carbons were enhanced to 164.4 mg/g at 1 bar and 1045 mg/g at 30 bar by increasing the Mg acetate-to-CER ratio. This result indicates that CER was one of the carbon precursors to producing the porous structure, as well as for improving the CO(2) adsorption capacities of the carbon species.  相似文献   

8.
The importance of shape in the adsorption of nitrogen, carbon dioxide and methane (common molecular probes for solid characterization) on surfaces and in confined spaces is investigated for its effects on the adsorption capacity and isosteric heat. We study the possibility of using an equivalent pseudo-sphere model to describe the potential energy of interaction of these molecular probes. On a flat open surface, we find that the equivalent pseudo-sphere model describes adsorption of these species sufficiently well. However, in the confined space of pores, especially pores that accommodate three layers or less, the pseudo-sphere model describes the adsorption badly because of the geometrical constraint on the molecular packing. It is recommended that to study adsorption properly in small pores, potential models that correctly describe molecular shape should be used. In characterization, pseudo-sphere models are commonly used to generate the kernels (local isotherms) for the determination of pore size distribution which can lead to misleading results. We illustrate this with an example to show that the wrong pore size distribution results if pseudo-sphere kernels are used.  相似文献   

9.
NVT- and NpT-Gibbs ensemble Monte Carlo (GEMC) simulations were applied to describe the vapor–liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determined between 310 and 520 K by NpT-MC simulations. Literature data for the effective pair potentials (for water: the SPC-, SPC/E-, and TIP4P potential models; for carbon dioxide: the EPM2 potential model) were used to describe the properties of the pure substances. The vapor pressures of water and carbon dioxide are calculated. For water, the SPC- and TIP4P models give superior results for the vapor pressure when compared to the SPC/E model. The vapor–liquid equilibrium of the binary mixture, carbon dioxide–water, was predicted using the SPC- as well as the TIP4P model for water and the EPM2 model for carbon dioxide. The interactions between carbon dioxide and water were estimated from the pair potentials of the pure components using common mixing rules without any adjustable binary parameter. Agreement of the predicted data for the compositions of the coexisting phases in vapor–liquid equilibrium and experimental results is observed within the statistical uncertainties of the simulation results in the investigated range of state, i.e. at pressures up to about 20 MPa.  相似文献   

10.
Hitherto, adsorption has been traditionally used to study only the porous structure in disordered materials, while the structure of the solid phase skeleton has been probed by crystallographic methods such as X-ray diffraction. Here we show that for carbons density functional theory, suitably adapted to consider heterogeneity of the pore walls, can be reliably used to probe features of the solid structure hitherto accessibly only approximately even by crystallographic methods. We investigate a range of carbons and determine pore wall thickness distributions using argon adsorption, with results corroborated by X-ray diffraction.  相似文献   

11.
The adsorption of carbon dioxide and methane on silicalite pellets packed on a fixed bed has been studied. Equilibrium and kinetic measurements of the adsorption of carbon dioxide and methane have been performed, and a binary adsorption isotherm for carbon dioxide/methane mixtures has been obtained. A model based on the LDF approximation for the mass transfer has been used to describe the breakthrough curves obtained experimentally. A PSA cycle has been proposed for obtaining methane with purity higher than 98% from carbon dioxide/methane mixtures containing 38% and 50% methane, and its performance has been simulated using the proposed model. The simulation results show that silicalite can be a suitable adsorbent for employment in a PSA separation process for carbon dioxide removal from coalseam and landfill gases.  相似文献   

12.
We report the adsorption isotherms and the isosteric heats of adsorption of pure methane, ethane, and CO2 and a mixture of methane and CO2 in the periodic mesoporous silica MCM-41 using a multicomponent adsorption calorimeter of the Tian-Calvet type, looking in particular at the degree of heterogeneity in the adsorption of these species. The adsorption of methane and ethane in MCM-41 was found to be essentially homogeneous, while the adsorption of pure CO2 and of CO2 from a CO2/methane mixture was found to be significantly heterogeneous, reflecting the electrostatic interactions between CO2 and the adsorbent.  相似文献   

13.
采用巨正则系统MonteCarlo方法研究了甲烷在单壁碳纳米管(Singlewallcarbonnanotube,SWNT)中于低温74.05K下的吸附等温线及吸附机理,发现在两个较小的孔径(1.225nm和1.632nm)下单壁碳纳米管中甲烷的吸附有着明显的微孔所独有的“填充效应”,而在2.04nm以上的孔的吸附中会出现毛细凝聚现象。通过模拟知道发生毛细凝聚的必要条件是孔内能至少容纳下两层粒子,此外还导出在恒定温度下毛细凝聚吸附量与SWNT孔径关系。本文还模拟了常温300K下甲烷在SWNT内的吸附,对比了2.04nm和4.077nm两种孔径的SWNT吸附甲烷的等温线,推荐在4.077nm孔中的适宜吸附存储压力为5.0~6.0MPa,吸附质量分数可达16%~19%.  相似文献   

14.
Granular and monolith carbon materials were prepared from African palm shell by chemical activation with H3PO4, ZnCl2 and CaCl2 aqueous solutions of different concentrations. Adsorption capacity of carbon dioxide and methane were measured at 298 K and 4,500 kPa, and also of CO2 at 273 K and 100 kPa, in a volumetric adsorption equipment. Correlations between the textural properties of the materials and the adsorption capacity for both gases were obtained from the experimental data. The results obtained show that the adsorption capacity of CO2 and CH4 increases with surface area, total pore volume and micropore volume of the activated carbons. Maximum adsorption values were: 5.77 mmol CO2 g?1 at 273 K and 100 kPa, and 17.44 mmol CO2 g?1 and 7.61 mmol CH4 g?1 both at 298 K and 4,500 kPa.  相似文献   

15.
We present here Monte Carlo simulation and experimental results on the adsorption of nitrogen and water in aluminum methylphosphonate polymorph alpha (AlMePO-alpha). We have assumed a detailed atomic model for the material, using experimental information to construct the simulation cell. Nitrogen was modeled with two different approaches: as a simple Lennard-Jones (LJ) sphere with no charges, and as a diatomic molecule with charges explicitly included. Water was represented by the TIP4P model. Experimental adsorption isotherms were used to tune the proposed molecular model for the adsorbent. Simulated adsorption capacities were in agreement with the experimental results obtained for the studied systems. The influence of the surface model on the adsorption behavior was taken into account by considering different values of the surface methyl group size parameter. Our results corroborate the strong sensitivity of the simulation results to this parameter, as previously observed by Schumacher and co-workers. It is also observed that charged models are essential to accurately describe the low-pressure region of the adsorption isotherm, where the solid-fluid interaction rules the system behavior. However, a simple uncharged molecular model for nitrogen is able to describe the three loci arrangement at maximum loading. Experimental and simulation results presented here also confirm the low water affinity of AlMePO-alpha. These results enforce the application of this methodology to achieve quantitative predictions on similar systems, with the appropriate transferability of the molecular parameters.  相似文献   

16.
Solubilities of oxygen, carbon dioxide and water in substituted fluorocarbons perfluoroctylethane (PFOE), perfluorohexylethane (PFHE), perfluorohexylhexane (PFHH) and perfluoroalkylbromide (PFOB) were studied by computer simulation, between 293 and 313 K at 1 bar. The solubilities do not show a marked temperature dependence, are similar in all solvents and have values of the order of 4×10−3 for oxygen, 2×10−2 for carbon dioxide and 3×10−6 for water, in mole fraction. The gases are slightly less soluble in PFHE when compared with the other solvents, whereas water is slightly more soluble in this liquid. The solubilities were obtained from Henry’s law coefficients, in turn derived from residual chemical potentials of the solutes at infinite dilution obtained by molecular simulation techniques using full atomistic force fields.  相似文献   

17.
We report a joint experimental and molecular simulation study of water condensation in silicalite-1 zeolite. A sample was synthesized using the fluoride route and was found to contain essentially no defects. A second sample synthesized using the hydroxide route was found to contain a small amount of silanol groups. The thermodynamics of water condensation was studied in these two samples, as well as in a commercial sample, in order to understand the effect of local defects on water adsorption. The molecular simulation study enabled us to qualitatively reproduce the experimentally observed condensation thermodynamics features. A shift and a rounding of the condensation transition was observed with an increasing hydrophilicity of the local defect, but the condensation transition was still observed above the water saturation vapor pressure P0. Both experiments and simulations agree on the fact that a small water uptake can be observed at very low pressure, but that the bulk liquid does not form from the gas phase below P0. The picture that emerges from the observed water condensation mechanism is the existence of a heterogeneous internal surface that is overall hydrophobic, despite the existence of hydrophilic "patches". This heterogeneous surface configuration is thermodynamically stable in a wide range of reduced pressures (from P/P0 = 0.2 to a few thousands), until the condensation transition takes place.  相似文献   

18.
Using alumina (Al2O3) as the adsorbent, a static adsorption experiment was carried out in this study. It comprehensively evaluated the factors including Al2O3 dosage, adsorption temperature, and pH that influence the adsorption capability of three tetracyclines (TCs), namely, tetracycline hydrochloride (TC), chlortetracycline hydrochloride (CTC) and oxytetracycline hydrochloride (OTC). The results demonstrate that the adsorption efficiency increases with Al2O3 dosage. In addition, low-acid or natural solution is benefit for the adsorption. The adsorption behavior is more reasonably described with the Freundlich isotherm, and fits well with the pseudo-second-order kinetic model (R2?>?0.999). The results of molecular dynamics (MD) simulation show that the structures of TCs deformed during the combining process. The values of binding energy of TCs follow the order as: CTC (88.45?kcal/mol)?>?OTC (73.54?kcal/mol)?>?TC (54.28?kcal/mol). The MD simulation results agree well with the adsorption experimental results, which indicates that the MD simulation is reliable and reasonable. The MD simulation will provide theoretical knowledge in understanding the adsorption mechanism and environmental behavior of TCs.  相似文献   

19.
Monte Carlo and molecular dynamics simulations have been used in order to test the ability of a three center intermolecular potential for carbon dioxide to reproduce literature experimental thermophysical values. In particular, both the shear viscosity under supercritical conditions and along the phase coexistence line, as well as the thermal conductivity under supercritical conditions, have been calculated. Together with the already reported excellent agreement for the phase coexistence densities, the authors find that the agreement with experimental values is, in general, good, except for the thermal conductivity at low density. Although extended versions of the model were employed, which include an explicit account of bending and vibrational degrees of freedom, a significant difference was still found with respect to the reported experimental value.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号