首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical warfare agent simulants are efficiently recovered from 2-ppm spikes in 1 g of Rocky Mountain Arsenal Standard Soil using methanol-carbon dioxide (5:95) at 300 atm for 2 min at 60°C. Recoveries (n = 3) were 79 ± 23% for dimethylmethylphosphonate, 93 ± 14% for 2-chloroethylethyl sulfide, 92 ± 13% for diisopropylfluorophosphate and 95 ± 17% for diisopropylmethylphosphonate. Recoveries are higher than, but less precise than those achieved from a 5-min ultrasonic micro-scale extraction using methanol. Much less laboratory waste is generated than the current standard organic solvent extraction method (33 g of soil shaken with 100 ml of chloroform).  相似文献   

2.
The room-temperature uptake and reactivity of gas-phase methyl dichlorophosphate (MDCP) and trichlorophosphate (TCP) within trisilanolphenyl-polyhedral oligomeric silsesquioxane (POSS) Langmuir-Blodgett films are investigated. The halogenated phosphate molecules are found to readily diffuse into and react with the hybrid inorganic-organic silicon-oxide films under ambient conditions. Reflection absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), and fast atom bombardment-mass spectrometry (FAB-MS) measurements suggest that the chlorophosphates undergo hydrolysis with the silanol groups of the POSS LB-film. Substitution and elimination reactions appear to cap the corner of the POSS molecules, leaving a surface-bound phosphoryl group and a resulting structure that is highly stable at elevated temperatures.  相似文献   

3.
Desorption electrospray ionization (DESI) mass spectrometry is used for the selective and sensitive detection of trace amounts of explosives and chemical warfare agent simulants from ambient surfaces at distances of up to 3 meters from the mass spectrometer.  相似文献   

4.
5.
We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN(+) using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.  相似文献   

6.
The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described.  相似文献   

7.
8.
A portable tandem mass spectrometer, capable of performing atmospheric pressure chemical ionization (APCI) using a direct atmospheric inlet, is applied to the real-time monitoring of toxic compounds in air. Analytes of interest include dimethyl methylphosphonate, arsine, benzene, toluene, pyridine and vinyl acetate. The detection, identification and quantification of organic and inorganic compounds in air is demonstrated using short analysis times (<5 seconds) with detection limits in the low ppb (v/v) levels and linear dynamic ranges of several orders of magnitude. Highly specific detection and identification is achieved, even when the analyte is a trace component in a complex mixture including such interferents as fuels, lubricants, and cleaners. The effects of environmental conditions, including temperature and humidity, are delineated. Receiver operating characteristic (ROC) curves are presented to show the trade-off between false positive and false negative detection rates. Tandem mass spectrometry based both on collision-induced dissociation and on selective atmospheric pressure ion/molecule reactions is also used to increase selectivity and sensitivity.  相似文献   

9.
A "key-sequence" procedure is presented for the automated tandem mass spectrometric analysis of compounds on a Finnigan ion-trap mass spectrometer. This allows fragmentation pathways of a range of masses or even a complete spectrum to be prepared automatically, obviating the tiresome preparation and optimization of individual scan-editor files. The procedure is limited by the speed of the driving computer; an "IBM-AT", for example, permits more than 10 mass units to be scanned per minute. It is calibrated with perfluorotributylamine and methyl stearate is used to demonstrate its results. The Finnigan ion-trap "programming option" is necessary for implementation of the procedure.  相似文献   

10.
This work demonstrates for the first time the potential of using recent developments in proton transfer reaction mass spectrometry for the rapid detection and identification of chemical warfare agents (CWAs) in real‐time. A high‐resolution (m/Δm up to 8000) and high‐sensitivity (~50 cps/ppbv) proton transfer reaction time‐of‐flight mass spectrometer (PTR‐TOF 8000 from Ionicon Analytik GmBH) has been successfully used to detect a number of CWA simulants at room temperature; namely dimethyl methylphosphonate, diethyl methylphosphonate, diisopropyl methylphosphonate, dipropylene glycol monomethyl ether and 2‐chloroethyl ethyl sulfide. Importantly, we demonstrate in this paper the potential to identify CWAs with a high level of confidence in complex chemical environments, where multiple threat agents and interferents could also be present in trace amounts, thereby reducing the risk of false positives. Instantaneous detection and identification of trace quantities of chemical threats using proton transfer reaction mass spectrometry could form the basis for a timely warning system capability with greater precision and accuracy than is currently provided by existing analytical technologies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

In order to develop new, low toxicity and readily accessible supramolecular simulants for V-series organophosphorus chemical warfare agents (OP CWAs) a series of organothiophosphate compounds, that are structurally analogous to the V-series OP CWAs, were designed and synthesized. Solution spectroscopic studies (luminescence and UV-vis) into the binding behaviors of these compounds and some organothiophosphate pesticides with the simple model trivalent lanthanide complex [Eu(phen)2(NO3)3]·3H2O were performed and association constants (Kassoc) determined. Binding behaviors of these compounds with other OP CWAs and simulants investigated previously in analogous studies are presented and the implications of this in the context of OP CWA and related chemical sensing are discussed.  相似文献   

12.
In this article, we describe the preparation and application of microbeads that exhibit a "turn on" fluorescence response within seconds of exposure to diethyl chlorophosphate (DCP) vapor. This sensing approach is modeled after the mechanism for acetylcholinesterase enzyme activity inhibition and uses a specific and irreversible reaction between phosphoryl halides and a fluorescent indicator. The microbeads are fabricated by adsorbing fluoresceinamine (FLA) onto carboxylate-functionalized polymer microbeads coated with poly(2-vinylpyridine) (PVP). When the microbeads are subjected to DCP vapor, the conversion of FLA into a phosphoramide causes a rapid and intense fluorescence increase. The PVP layer provides a high density of proton-accepting pyridine nitrogen sites that neutralize the HCl released during the reaction, thereby maintaining high product fluorescence, even after vapor exposure. No significant response is observed when the microbeads are subjected to other nerve agent simulants, a mustard gas simulant, and volatile organics. The size, sensitivity, and subsecond response of these microbeads make them suitable for nerve agent vapor detection and inclusion into microbead sensor arrays.  相似文献   

13.
Zirconia (ZrO(2)) has strong Lewis acid sites which have an affinity for the strongly electronegative phosphonate group of organo-phosphates. To investigate whether this affinity can be used for selective preconcentration, the retention of methyl, ethyl, and propylphosphonic acid (MPA, EPA and PPA) and inorganic anion matrix components on ZrO(2) was investigated. Only organo-phosphates and sulfate exhibited retention on zirconia. After preconcentration, the retained species were eluted from ZrO(2) by 0.75 mM Na(2)CO(3), and separated by a Dionex Ionpac AS11 anion-exchange column (250 mm x 2 mm I.D.) and a Hypercarb RPLC column (50 mm x 4.6 mm I.D., 3 microm) in series followed by suppressed conductivity detection. Calibration curve showed a linear response for MPA, EPA and PPA in the range of 0.01 microM to 1 microM (R(2)>0.9989). Detection limits after preconcentration of a 10 mL sample were 0.16, 0.19 and 0.16 microg/L for MPA, EPA, and PPA, respectively.  相似文献   

14.
ABSTRACT

Benzocrown ethers incorporating phenyl and nitrophenyl urea and thiourea moieties were synthesised. Both the nitrophenyl urea and thiourea derivative gave a fluoride-specific colorimetric response but only the urea derivative bound the organophosphonate nerve agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP). This suggested an application as sensors for the nerve agents sarin, soman and cyclosarin which release fluoride upon hydrolysis. Although no fluoride-induced response was observed in the UV-visible spectrum, binding to soman was determined by 1H NMR. DFT computational simulations suggested that the two crowns adopt different conformations in which both can bind fluoride but only the urea derivative can bind DMMP, DIMP and soman. The results show that, for this system, simulant- and soman-binding behaviours are in good agreement.  相似文献   

15.
Zhu Z  Xiong C  Xu G  Liu H  Zhou X  Chen R  Peng WP  Nie Z 《The Analyst》2011,136(7):1305-1309
A miniature cylindrical ion trap mass spectrometer (CIT-MS) equipped with an inexpensive mechanical pump was constructed, and used to measure the masses of cells and microparticles generated by laser induced acoustic desorption ionization. Compared with a previous lab scale quadrupole ion trap mass spectrometer (QIT-MS), the novel miniature CIT-MS had smaller volume (the radius r(0)=5 mm), simpler ion trap fabrication and overall instrument construction, required a lower trapping voltage, and reduced the weight, power and cost of the instrument. The CIT-MS was calibrated using standard polystyrene beads of 2.982 μm diameter. The CIT-MS was used to measure the total dry weight of human red blood cells (RBCs) from a healthy female adult (2.12×10(13) Da) and a patient with anemia (1.35×10(13) Da). The coefficient of variance (CV) for the healthy individual was 21% and that for the patient was 30.4%. The CIT-MS was also applied to guinea pig RBCs and the total dry weight was determined as 1.34×10(13) Da with a CV of 37.9%. These measurements are consistent with previous QIT-MS measurements. The new miniaturized instrument has potential for applications in field-portable, biological and aerosol analysis.  相似文献   

16.
The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem. 2006, 78, 5994–6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds’ permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics.  相似文献   

17.
18.
Desorption electrospray ionization mass spectrometry (DESI‐MS) has been applied to the direct analysis of sample media for target chemicals, including chemical warfare agents (CWA), without the need for additional sample handling. During the present study, solid‐phase microextraction (SPME) fibers were used to sample the headspace above five organophosphorus CWA, O‐isopropyl methylphosphonofluoridate (sarin, GB), O‐pinacolyl methylphosphonofluoridate (soman, GD), O‐ethyl N,N‐dimethyl phosphoramidocyanidate (tabun, GA), O‐cyclohexyl methylphosphonofluoridate (cyclohexyl sarin, GF) and O‐ethyl S‐2‐diisopropylaminoethyl methyl phosphonothiolate (VX) spiked into glass headspace sampling vials. Following sampling, the SPME fibers were introduced directly into a modified ESI source, enabling rapid and safe DESI of the toxic compounds. A SYNAPT HDMS? instrument was used to acquire time‐aligned parallel (TAP) fragmentation data, which provided both ion mobility and MSn (n = 2 or 3) data useful for the confirmation of CWA. Unique ion mobility profiles were acquired for each compound and characteristic product ions of the ion mobility separated ions were produced in the Triwave? transfer collision region. Up to six full scanning MSn spectra, containing the [M + H]+ ion and up to seven diagnostic product ions, were acquired for each CWA during SPME fiber analysis. A rapid screening approach, based on the developed methodology, was applied to several typical forensic media, including Dacron sampling swabs spiked with 5 µg of CWA. Background interference was minimal and the spiked CWA were readily identified within one minute on the basis of the acquired ion mobility and mass spectrometric data. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

19.
An automated dynamic headspace sampler coupled to a gas chromatograph/mass spectrometer was evaluated as an oxidative marker to determine hexanal content in vegetable oils. For the effective analysis, a cooled injection system (CIS) was used to focus and to introduce the hexanal desorbed from the Tenax TA. The temperature of the CIS was maintained at -60 °C for 12 min before desorbing the hexanal. Hexanal was separated on a capillary column (DB-5, 0.25 mm × 60 m, 0.25 μm in film thickness) from 50 to 230 °C, followed by mass spectrometer-selected ion monitoring analysis at m/z 56. The instrumental response to hexanal was highly linear from 10 ng mL(-1) to 1 μg mL(-1) (r(2) = 0.9999). The relative standard deviation (RSD) of intra- and inter-day repeatability was acceptable, with values of less than 3.88 and 4.25%, respectively. The LOD and LOQ of hexanal were determined by gas chromatograph/mass spectrometer-selected ion monitoring to be 3.3 and 9.8 ng mL(-1), respectively. The acid value, peroxide value and fatty acid composition revealed a good correlation with the hexanal concentration.  相似文献   

20.
An automated monitoring system for various C1 to C5 gas-phase organic carbonyls in ambient air is described. The system consists of a parallel plate diffusion scrubber (PPDS), which is coupled with a high-performance liquid chromatography–ultraviolet (HPLC–UV) system using an automated injection valve. Compared with an annular diffusion scrubber (DS) employed so far for gas-phase carbonyl monitoring, PPDS shows an improved collection efficiency for formaldehyde, acetaldehyde, propionaldehyde, and acetone with >97% at an airflow rate of 0.5?L/min. High gas–liquid concentration ratios of PPDS and an optimised HPLC–UV system allow limits of detection (LOD) in a range of 80–500?pptv. A low liquid hold-up volume of the PPDS results in a short response time of about 10?min. Additionally, the optimised analysis time for 13 carbonyl compounds containing calibration standard enables brief measurement intervals of 25?min. The developed PPDS–HPLC system shows its reliability from urban site monitoring in Seoul, South Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号