首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular invasion requires careful regulation of the cell migration and apoptotic signaling cascades, allowing cell movement and survival of the emigrating populations. Components of the endosomal machinery are involved in these processes, and in particular the role of small GTPases of the Rab family has become appreciated. Rab5 is best known for its role in regulating the trafficking of early endosomes, however, it has recently been appreciated to associate with and regulate the routing of complexes containing integrins, the primary cellular receptors for the extracellular matrix. The association regulates the spatio temporal activation of signals of downstream growth factors and integrins. Rab proteins have also been linked to apoptosis mediated by cell surface death receptors, which elicit the activation of the death cascade via activation of caspase 8. Recently, the link between trafficking, apoptosis and cell migration was strengthened, as Rab5 was determined to work in conjunction with caspase 8 in promoting tumor cell motility and metastasis by regulating β1 integrin traffic. The capacity to connect and regulate these pathways identifies Rab5 as a key player in future studies of cell migration and tumor dissemination.  相似文献   

2.
Cathepsin B, a cysteine protease, is an important target in fighting cancer. This enzyme has been implicated in enhancing tumor invasiveness and metastasis, therefore inhibitors for cathepsin B are highly sought as potential anticancer and antimetastatic agents. A structure-based design effort was pursued in arriving at a template for inhibition of cathepsin B. Focused compound libraries were synthesized based on this template, which were screened for cathepsin B inhibitory properties. Compound 2, 1-(2(R)-[1(S)-acetoxy-2-[2(S)-(2,4-difluoro-benzoylamino)-3-phenyl-propionylaminooxy]-2-oxo-ethyl]-pentanoyl)-pyrrolidine-2(S)-carboxylic acid benzyl ester, is the prototype of this novel class of cysteine protease inhibitor that emerged from the search. The molecule modifies the active site of cathepsin B covalently, irreversibly, and efficiently, a process for which the kinetic parameters were evaluated. A set of three judiciously altered variants of compound 2 was also synthesized to explore the details of the proposed mechanism of action by this inhibitor. Compound 2 and its analogues may prove useful tools in reversing the deleterious effect of cathepsin B in fighting cancer.  相似文献   

3.
4.
Cell motility is a very critical phenomenon that plays an important role in the development of eukaryotic organisms. One of the well studied cell motility phenomena is chemotaxis, which is described as a directional movement of cell in response to changes in external chemotactic gradient. Numerous studies conducted both in unicellular organism and in mammalian cells have demonstrated the importance of phosphatidylionositol-3 kinase (PI3K) in this process. In addition, it is now well established that although PI3K plays an activation role in chemotaxis, the role of phosphatases is also critical to maintain this dynamic cyclical process. Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that is a key player in regulating PI3K signaling. PP2A is abundantly and ubiquitously expressed and has been highly conserved during the evolution of eukaryotes. PP2A is composed of three protein subunits, A, B, and C. Subunit 'A' is a 60-65 kDa structural component, 'C' is a 36-38 kDa catalytic subunit, and 'B' is a 54-130 kDa regulatory subunit. The core complex of PP2A is comprised of the A and C subunits, which are tightly associated and this dimeric core complexes with the regulatory B subunit. The B subunit determines the substrate specificity as well as the spatial and temporal functions of PP2A. PP2A plays an important role in regulating multiple signal transduction pathways, including cell-cycle regulation, cell-growth and development, cytoskeleton dynamics, and cell motility. This review focuses on the role of PP2A in regulating motility of normal and transformed cells.  相似文献   

5.
The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost-effective and operation-friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual-roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics-based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.  相似文献   

6.
7.
Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.  相似文献   

8.
During the course of screening natural products for the inhibitors of tumor cell invasion, pterocidin, a linear polyketide with a δ-lactone terminus, was rediscovered from a Streptomyces strain of a marine sediment-origin. A series of J-based configuration analyses and NOESY analysis, coupled with chemical derivatization and chiral anisotropy analysis, established the absolute stereochemistry of five asymmetric centers in this compound.  相似文献   

9.
We used metastatic variant of B16 melanoma (B16F1) to study lung colonization galectin-3-deficient (gal-3−/−) C57BL/6 mice. In vivo study showed that compared with gal-3+/+ mice, gal-3−/−mice exhibited resistance to lung colonization of B16F1 melanoma cells (p < 0.03). In vitro assays showed higher number of attached malignant cells in the tissue section derived from gal-3+/+ mice (p < 0.001) and tumor specific cytotoxicity of lymphoid cells of tumour inoculated gal-3−/− suggesting that galectin-3 is considered as therapeutic target.  相似文献   

10.
In this review, we introduced the mechanical factors in cancer cell metastasis, intracellular mechanical sensors and methods to measure the mechanical forces of tumor cells for evaluating the mechanochemistry in cancer metastasis.  相似文献   

11.
Cell migration and invasion are critical steps in cancer metastasis, which are the major cause of death in cancer patients. Tumor-associated macrophages(TAMs) and interstitial flow(IF) are two important biochemical and biomechanical cues in tumor microenvironment, play essential roles in tumor progression. However, their combined effects on tumor cell migration and invasion as well as molecular mechanism remains largely unknown. In this work, we developed a microfluidic-based 3 D breast cancer model by co-culturing tumor aggregates, macrophages, monocytes and endothelial cells within 3 D extracellular matrix in the presence of IF to study tumor cell migration and invasion. On the established platform, we can precisely control the parameters related to tumor microenvironment and observe cellular responses and interactions in real-time. When co-culture of U937 with human umbilical vein endothelial cells(HUVECs) or MDA-MB-231 cells and tri-culture of U937 with HUVECs and MDA-MB-231 cells, we found that mesenchymal-like MDA-MB-231 aggregates activated the monocytes to TAM-like phenotype macrophages. MDA-MB-231 cells and IF simultaneously enhanced the macrophages activation by the stimulation of colony-stimulating factor 1(CSF-1). The activated macrophages and IF further promoted vascular sprouting via vascular endothelial growth factor(VEGFα) signal and tumor cell invasion. This is the first attempt to study the interaction between macrophages and breast cancer cells under IF condition. Taken together, our results provide a new insight to reveal the important physiological and pathological processes of macrophages-tumor communication. Moreover, our established platform with a more mimetic 3 D breast cancer model has the potential for drug screening with more accurate results.  相似文献   

12.
The target of locostatin, a small-molecule inhibitor of cell movement, has been identified as RKIP, a Raf-1 kinase modulator [1]. In addition to advancing our understanding of cell locomotion, this work represents a major landmark in the development of chemical genetics.  相似文献   

13.
Crizotinib is a clinically approved tyrosine kinase inhibitor for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) harboring EML4-ALK fusion. Crizotinib was originally developed as an inhibitor of MET (HGF receptor), which is involved in the metastatic cascade. However, little is known about whether crizotinib inhibits tumor metastasis in NSCLC cells. In this study, we found that crizotinib suppressed TGFβ signaling by blocking Smad phosphorylation in an ALK/MET/RON/ROS1-independent manner in NSCLC cells. Molecular docking and in vitro enzyme activity assays showed that crizotinib directly inhibited the kinase activity of TGFβ receptor I through a competitive inhibition mode. Cell tracking, scratch wound, and transwell migration assays showed that crizotinib simultaneously inhibited TGFβ- and HGF-mediated NSCLC cell migration and invasion. In addition, in vivo bioluminescence imaging analysis showed that crizotinib suppressed the metastatic capacity of NSCLC cells. Our results demonstrate that crizotinib attenuates cancer metastasis by inhibiting TGFβ signaling in NSCLC cells. Therefore, our findings will help to advance our understanding of the anticancer action of crizotinib and provide insight into future clinical investigations.Subject terms: Non-small-cell lung cancer, Targeted therapies  相似文献   

14.
Aberrant activation of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, Met, is involved in the development and progression of many human cancers. In the cell-based screening assay, (-)epigallocatechin-3-gallate (EGCG) inhibited HGF/SF-Met signaling as indicated by its inhibitory activity on HGF/SF-induced cell scattering and uPA activation (IC50=15.8 microgram/ml). Further analysis revealed that EGCG at low doses specifically inhibited HGF/SF-induced tyrosine phosphorylation of Met but not epidermal growth factor (EGF)-induced phosphorylation of EGF receptor (EGFR). On the other hand, high-dose EGCG decreased both Met and EGFR proteins. We also found that EGCG did not act on the intracellular portion of Met receptor tyrosine kinase, i.e., it inhibited InlB-dependent activation of Met but not NGF-induced activation of Trk-Met hybrid receptor. This inhibition decreased HGF-induced migration and invasion by parental or HGF/SF-transfected B16F10 melanoma cells in vitro in either a paracrine or autocrine manner. Furthermore, EGCG inhibited the invasion/metastasis of HGF/SF-transfected B16F10 melanoma cells in mice. Our data suggest the possible use of EGCG in human cancers associated with dysregulated paracrine or autocrine HGF/SF-Met signaling.  相似文献   

15.
In early pregnancy, the placenta anchors the conceptus and supports embryonic development and survival. This study aimed to investigate the underlying functions of Shh signaling in recurrent miscarriage (RM), a serious disorder of pregnancy. In the present study, Shh and Gli2 were mainly observed in cytotrophoblasts (CTBs), Ptch was mainly observed in syncytiotrophoblasts (STBs), and Smo and Gli3 were expressed in both CTBs and STBs. Shh signaling was significantly impaired in human placenta tissue from recurrent miscarriage patients compared to that of gestational age-matched normal controls. VEGF-A and CD31 protein levels were also significantly decreased in recurrent miscarriage patients. Furthermore, inhibition of Shh signaling impaired the motility of JAR cells by regulating the expression of Gli2 and Gli3. Intriguingly, inhibition of Shh signaling also triggered autophagy and autolysosome accumulation. Additionally, knockdown of BECN1 reversed Gant61-induced motility inhibition. In conclusion, our results showed that dysfunction of Shh signaling activated autophagy to inhibit trophoblast motility, which suggests the Shh pathway and autophagy as potential targets for RM therapy.Subject terms: Embryology, Endocrine reproductive disorders, Autophagosomes  相似文献   

16.
Immunization with dendritic cells (DCs) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL), which is responsible for tumor protection and regression. In this study, we examined whether DCs pulsed with necrotic tumor lysates can efficiently prevent malignant melanoma tumor cell metastasis to the lung. DCs derived from mouse bone marrow were found to produce remarkably elevated levels of IL-12 after being pulsed with the tumor lysates. Moreover, immunization with these DCs induced CTL activation and protected mice from metastasis development by intravenously inoculated tumor cells. In addition, these DCs activated NK cells in vitro in a contact-dependent manner, and induced NK activities in vivo. Furthermore, NK cell depletion before DC vaccination significantly reduced the tumor-specific CTL activity, IFN-gamma production, and IFN-gamma- inducible gene expression, and eventually interfered with the antitumor effect of tumor-pulsed DCs. Finally, similar findings with respect to NK cell dependency were obtained in the C57BL/ 6J-bg/bg mice, which have severe deficiency in cytolytic activity of NK cells. These data suggest that the antitumor effect elicited by DC vaccination, at least in a B16 melanoma model, requires the participation of both cytolytic NK and CD8(+) T cells. The findings of this study would provide important data for the effective design of DC vaccines for cancer immunotherapy.  相似文献   

17.
We have developed a microfluidic platform that enables, in one experiment, monitoring of signaling events spanning multiple time-scales and cellular locations through seamless integration of cell culture, stimulation and preparation with downstream analysis. A combination of two single-cell resolution techniques-on-chip multi-color flow cytometry and fluorescence imaging provides multiplexed and orthogonal data on cellular events. Automated, microfluidic operation allows quantitatively- and temporally-precise dosing leading to fine time-resolution and improved reproducibility of measurements. The platform was used to profile the toll-like receptor (TLR4) pathway in macrophages challenged with lipopolysaccharide (LPS)-beginning with TLR4 receptor activation by LPS, through intracellular MAPK signaling, RelA/p65 translocation in real time, to TNF-α cytokine production, all in one small macrophage population (< 5000 cells) while using minute reagent volume (540 nL/condition). The platform is easily adaptable to many cell types including primary cells and provides a generic platform for profiling signaling pathways.  相似文献   

18.
Cardiac glycosides consist of a large family of naturally derived compounds that are clinically used to treat congestive heart failure, and also present anticancer properties. In this study, the cytotoxic effects of two cardenolides, digitoxigenin monodigitoxoside (DGX) and convallatoxin (CON) were screened in four human tumour cell lines. Both compounds showed anti-proliferative effects in all tumour cells, at nanomolar concentrations. Since the human lung cancer cell line A549 was the most sensitive, we investigated the anti-proliferative, anti-migratory and anti-invasive effects of these cardenolides. DGX and CON reduced A549 cell migration, being able to reduce more than 90% of cell invasion. Their effects on the expression of key regulators of metastatic mechanism showed decreased levels of MMP-2, MMP-9 and p-FAK. Both compounds also presented low toxicity for healthy cells. Finally, this work provides the first insights into the effects of these cardenolides on key steps of lung cancer metastasis.  相似文献   

19.
The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). Recent studies have shown that MIIP not only modulates IGFBP2 but also regulates microtubule by binding to and inhibiting HDAC6, a class 2 histone deacetylase that deacetylates α-tubulin, heat-shock protein 90 (HSP90), and cortactin. In addition, MIIP also regulates the mitosis checkpoint, another microtubule-associated process. The location of the MIIP gene in chromosomal region 1p36, a commonly deleted region in a broad spectrum of human cancers, and the observation that MIIP attenuates tumorigenesis in a mouse model suggest that it functions as a tumor-suppressor gene. This review summarizes the recent progress in characterizing this novel protein, which regulates cell migration and mitosis, two processes that rely on the highly coordinated dynamics of the microtubule and cytoskeleton systems.  相似文献   

20.
We have investigated the shape, size, and motility of a minimal model of an adherent biological cell using the Monte Carlo method. The cell is modeled as a two dimensional ring polymer on the square lattice enclosing continuously polymerizing and depolymerizing actin networks. Our lattice model is an approximate representation of a real cell at a resolution of one actin molecule, 5 nm. The polymerization kinetics for the actin network are controlled by appropriate reaction probabilities which correspond to the correct experimental reaction rates. Using the simulation data we establish various scaling laws relating the size of the model cell to the concentration of polymerized and unpolymerized actin molecules and the length of the enclosing membrane. The computed drift velocities, which characterize the motility of the cell, exhibit a maximum at a certain fraction of polymerized actin which agrees with physiological fractions observed in experiments. The appearance of the maximum is related to the competition between the polymerization-induced protrusion of the membrane and the concomitant suppression of membrane fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号