共查询到20条相似文献,搜索用时 0 毫秒
1.
Fang G Li W Wang X Qiao G 《Langmuir : the ACS journal of surfaces and colloids》2008,24(20):11651-11660
Superhydrophobic surfaces have shown promising applications in microfluidic systems as a result of their water-repellent and low-friction properties over the past decade. Recently, designed microstructures have been experimentally applied to construct wettability gradients and direct the droplet motion. However, thermodynamic mechanisms responsible for the droplet motion on such regular rough surfaces have not been well understood such that at present specific guidelines for the design of tunable superhydrophobic surfaces are not available. In this study, we propose a simple but robust thermodynamic methodology to gain thorough insight into the physical nature for the controllable motion of droplets. On the basis of the thermodynamic calculations of free energy (FE) and the free-energy barrier (FEB), the effects of surface geometry of a pillar microtexture are systematically investigated. It is found that decreasing the pillar width and spacing simultaneously is required to lower the advancing and receding FEBs to effectively direct droplets on the roughness gradient surface. Furthermore, the external energy plays a role in the actuation of spontaneous droplet motion with the cooperation of the roughness gradient. In addition, it is suggested that the so-called "virtual wall" used to confine the liquid flow along the undesired directions could be achieved by constructing highly advancing FEB areas around the microchannels, which is promising for the design of microfluidic systems. 相似文献
2.
Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces 总被引:1,自引:0,他引:1
Krupenkin TN Taylor JA Wang EN Kolodner P Hodes M Salamon TR 《Langmuir : the ACS journal of surfaces and colloids》2007,23(18):9128-9133
In this work, electrically controlled fully reversible wetting-dewetting transitions on superhydrophobic nanostructured surfaces have been demonstrated. Droplet behavior can be reversibly switched between the superhydrophobic Cassie-Baxter state and the hydrophilic Wenzel state by the application of electrical voltage and current. The nature of the reversibility mechanism was studied both experimentally and theoretically. The reported results can provide a new method of dynamically controlling liquid-solid interactions. 相似文献
3.
The hydrodynamic drainage force of a Newtonian aqueous electrolyte solution squeezed between two surfaces of different wettability was measured using the AFM colloidal probe technique. The surface hydrophobicity, roughness, polarity and approach velocity, and thus the shearing rate of the liquid, were controlled. A direct relationship between the mobility of the aqueous electrolyte solution close to the surfaces and the hydrophobicity of the surfaces was not established. We predict that the mobility of the liquid depends in a more complex fashion on the polarity and charge of the surfaces and on the properties of the electrolyte. 相似文献
4.
Preparation and photocatalytic wettability conversion of TiO2-based superhydrophobic surfaces 总被引:1,自引:0,他引:1
Zhang X Jin M Liu Z Nishimoto S Saito H Murakami T Fujishima A 《Langmuir : the ACS journal of surfaces and colloids》2006,22(23):9477-9479
We present here a facile method for the preparation of TiO2-based superhydrophobic surfaces. It consists of two steps: (1) roughening of the TiO2 surface with a rf (radio frequency) plasma with CF4 as an etchant and (2) modification of the roughened TiO2 surface with an octadodecylphosphonic acid (ODP) monolayer. Plasma etching caused the thinning of the TiO2 film but at the same time enhanced its surface roughness. A discontinuous wedgelike surface microtexture was formed after etching for 30 s, which, after modification with a monolayer of ODP, showed Cassie-type water super-repellency with a contact angle (CA) hysteresis smaller than 2 degrees . The state of water super-repellency (water CA >165 degrees) could be converted to the state of superhydrophilicity (water CA approximately 0 degrees) by means of ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the ODP monolayer by TiO2. Readsorption of ODP molecules leads directly to the recovery of water super-repellency. 相似文献
5.
Kitagawa D Yamashita I Kobatake S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(35):9825-9831
A photochromic diarylethene crystal of 1,2‐bis(2‐methyl‐6‐nitro‐1‐benzothiophen‐3‐yl)perfluorocyclopentene ( 1 a ) was found to undergo a thermodynamic phase transition at 180 °C to form a needle‐like crystal, designated as 1 a‐γ . The phase transition involves melting of the initial α‐crystal and growth of the γ‐crystal. The phase transition temperature decreased with the presence of the closed‐ring isomer ( 1 b ) in the crystal because of the decrease in the melting temperature. Upon irradiation with ultraviolet (UV) light, compound 1 a in the α‐crystal was converted into 1 b to an extent of 20 %. Consequently, the α‐crystal containing 20 % of 1 b underwent the phase transition accompanied by melting of the crystal and growth of the γ‐crystal even at 170 °C. Photomicropatterning by the phase transition upon irradiation with UV light using a photomask, followed by heating at 170 °C, was successfully accomplished with a resolution in the microcrystalline pattern of about 20 μm. The contact angle with water on the γ‐microcrystalline phase on a glass substrate was larger than that on the α‐microcrystalline phase by 20°. This can be ascribed to a difference in the roughness of the surface. Furthermore, the γ‐microcrystal was also found to be formed upon heating an amorphous film of 1 a in poly(methyl methacrylate) for 2 min at 130 °C. The crystallized area exhibited a higher water contact angle than the amorphous area. Upon irradiation of the amorphous film with UV light, such crystallization did not take place because of the impurity effect of 1 b in 1 a . Photomicropatterning by the crystallization in the polymer showed a pattern with a higher resolution of about 4 μm, which was much better than that of the neat crystal. This photopatterning process represents a useful tool for controlling the surface wettability in relevant applications. 相似文献
6.
Transition between superhydrophobic states on rough surfaces 总被引:11,自引:0,他引:11
Patankar NA 《Langmuir : the ACS journal of surfaces and colloids》2004,20(17):7097-7102
Surface roughness is known to amplify hydrophobicity. It is observed that, in general, two drop shapes are possible on a given rough surface. These two cases correspond to the Wenzel (liquid wets the grooves of the rough surface) and Cassie (the drop sits on top of the peaks of the rough surface) formulas. Depending on the geometric parameters of the substrate, one of these two cases has lower energy. It is not guaranteed, though, that a drop will always exist in the lower energy state; rather, the state in which a drop will settle depends typically on how the drop is formed. In this paper, we investigate the transition of a drop from one state to another. In particular, we are interested in the transition of a "Cassie drop" to a "Wenzel drop", since it has implications on the design of superhydrophobic rough surfaces. We propose a methodology, based on energy balance, to determine whether a transition from the Cassie to Wenzel case is possible. 相似文献
7.
Borras A Barranco A González-Elipe AR 《Langmuir : the ACS journal of surfaces and colloids》2008,24(15):8021-8026
A new type of superhydrophobic material consisting of a surface with supported Ag@TiO(2) core-shell nanofibers has been prepared at low temperature by plasma-enhanced chemical vapor deposition (PECVD). The fibers are formed by an inner nanocrystalline silver thread which is covered by a TiO(2) overlayer. Water contact angles depend on the width of the fibers and on their surface concentration, reaching a maximum wetting angle close to 180 degrees for a surface concentration of approximately 15 fibers microm(-2) and a thickness of 200 nm. When irradiated with UV light, these surfaces become superhydrophilic (i.e., 0 degrees contact angle). The decrease rate of the contact angle depends on both the crystalline state of the titania and on the size of the individual TiO(2) domains covering the fibers. To the best of our knowledge, this is one of the few examples existing in the literature where a superhydrophobic surface transforms reversibly into a superhydrophilic one as an effect of light irradiation. 相似文献
8.
Kaggwa GB Froebe S Huynh L Ralston J Bremmell K 《Langmuir : the ACS journal of surfaces and colloids》2005,21(10):4695-4704
The adsorption of a polyacrylamide (MW 14600) and two polysaccharides (MW 9260 and 706 x 10(3)) onto model silica surfaces of different hydrophobicities was investigated. In all cases, adsorption adhered to the Freundlich isotherm, reflecting the heterogeneous character of the solid substrates. The latter strongly influenced the character of the adsorbed polymer, with morphologies from chainlike structures to thin films and patches being observed. Surface roughness, polymer type, and molecular weight also play roles in controlling adsorbed polymer morphology. Surface wettability is strongly influenced by the thickness of the adsorbed layer. 相似文献
9.
Uchida K Yamanoi Y Yonezawa T Nishihara H 《Journal of the American Chemical Society》2011,133(24):9239-9241
The chemical functionalization of hydrogen-terminated silicon(111) surfaces with photochromic diarylethene using an ethylene anchoring group was achieved. Conductive atomic force microscopy measurements showed the current changes on modified silicon electrodes caused by light-induced isomerization of the diarylethene between an open form and a closed form. 相似文献
10.
We investigated how the surface hierarchy of superhydrophobic (SHPo) surfaces influences liquid slip by testing well-defined microposts that have nanoposts only on their top. Contrary to the commonly held belief, our results show that such hierarchical surfaces do not always lead to an increase of slip length despite their reduced solid fraction and enhanced hydrophobicity compared to single-scale surfaces. Adding nanoposts on top of the microposts resulted in an increase of slip length only if the original microposts had a solid fraction above a threshold value. For solid fractions below this threshold, adding nanoposts decreased the slip length. We propose that there were not enough nanoposts on the top surface of very thin microposts to support the liquid pressure, allowing the liquid to intrude down to the top corners of the microposts. 相似文献
11.
Pei X Fernandes A Mathy B Laloyaux X Nysten B Riant O Jonas AM 《Langmuir : the ACS journal of surfaces and colloids》2011,27(15):9403-9412
Photoresponsive monolayers of hydrophilically substituted azobenzenes have been prepared by reaction on aminosilane monolayers on silicon surfaces. Grafting densities in the 0.2-1.0 molecule/nm(2) range were determined by X-ray reflectometry. The monolayers exhibit reversible photoisomerization, switching from a more hydrophilic trans state to a less hydrophilic cis state upon UV irradiation, in contrast with the usual behavior of most azobenzene monolayers that switch from a less to a more hydrophilic state. This indicates that the wettability is not dominated by the change in the dipole moment of the azobenzene moiety but originates from variations in the composition of the outer surface of the monolayers resulting from the reorientation of the substituent groups. The light-driven change in the water contact angle correlates linearly with the grafting density but remains small. However, the wettability contrast can be increased by forcing the molecules to stand in an improved vertical orientation, either by densifying the underlying aminosilane monolayer or by filling the voids left at the bottom of the layer of grafted azobenzene molecules. 相似文献
12.
Effect of surface morphology on measurement and interpretation of boundary slip on superhydrophobic surfaces 下载免费PDF全文
Highly liquid repellent surfaces have been obtained by the combination of roughness and hydrophobicity. Studies have reported that the flow over such surfaces exhibits larger boundary slip as compared to the smooth hydrophobic surfaces. However, the surface roughness can also lead to apparent slip. Thus, the effect of the two factors, that is, wettability and roughness, needs to be segregated. In this study, we have measured the slippage of water on rough hydrophilic and hydrophobic surfaces using colloidal probe atomic force microscopy technique (CP‐AFM). Results showed that the effect of surface roughness on the measured slip is dominant over that of wettability. It was also found that slip on surfaces with sparsely distributed asperities is highly local and measurements on various locations give dissimilar results. The results suggested that the main reason of the larger slip, on rough hydrophobic surfaces, is likely to be the roughness and not the hydrophobicity. Moreover, it was also found that the slip does not vary considerably with the increase or decrease in the shear rate. Most likely, this kind of slip phenomena is caused by the apparent decrease of the drag force, because the nanoasperities on the surface restrict the probe from reaching the surface properly. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
Feibelman PJ 《Langmuir : the ACS journal of surfaces and colloids》2004,20(4):1239-1244
Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water "interphase" (of width approximately a few nanometers) whose viscosity is much higher than that of the bulk liquid. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase viscosity of approximately 59 kPa x s (or approximately 6.6 x 10(7) times the viscosity of bulk water at 25 degrees C) from interfacial force microscope measurements with both tip and sample functionalized hydrophilic by OH-terminated tri(ethylene glycol) undecylthiol, self-assambled monolayers. 相似文献
14.
The wettabilities of fluorinated polymers were evaluated using a series of contacting probe liquids ranging in nature from nonpolar aprotic to polar aprotic to polar protic. Fully fluorinated polymers were wet less than partially fluorinated polymers, highlighting the weak dispersive interactions of fluorocarbons. For partially fluorinated polymers, the interactions between the distributed dipoles along the polymer backbone and the dipoles of the contacting liquids were evaluated using both polar and nonpolar probe liquids. The results demonstrate that the surface dipoles of the fluoropolymers generated by substituting fluorine atoms with hydrogen or chlorine atoms can strongly interact with polar contacting liquids. The wettabilities of the partially fluorinated polymers were enhanced by increasing the density of dipoles across the surfaces and by introducing differentially distributed dipoles. 相似文献
15.
Molecular dynamics and Langevin dynamics simulations are used to elucidate the behavior of liquid atoms near a solid boundary. Correlations between the surface wettability and spatial variations in liquid density and structure are identified. The self-diffusion coefficient tensor is predicted, revealing highly anisotropic and spatially varying mass transfer phenomena near the solid boundary. This behavior affects self-diffusion at a range of time scales. Near a more-wetting surface, self-diffusion is impeded by strong solid-liquid interactions that induce sharp liquid density gradients and enhanced liquid structure. Conversely, near a less-wetting surface, where solid-liquid interactions are weaker, the liquid density is low, the atoms are disordered, and diffusion is enhanced. These findings suggest that altering the wettability of a micro- or nanochannel may provide a passive means for controlling the diffusion of select targets towards a functionalized surface and controlling the reaction rate in diffusion-limited reactions. 相似文献
16.
Muñoz-Noval Á Hernando Pérez M Torres Costa V Martín Palma RJ de Pablo PJ Manso Silván M 《Langmuir : the ACS journal of surfaces and colloids》2012,28(3):1909-1913
In the present work, we investigate wetting phenomena on freshly prepared nanostructured porous silicon (nPS) with tunable properties. Surface roughness and porosity of nPS can be tailored by controlling fabrication current density in the range 40-120 mA/cm(2). The length scale of the characteristic surface structures that compose nPS allows the application of thermodynamic wettability approaches. The high interaction energy between water and surface is determined by measuring water contact angle (WCA) hysteresis, which reveals Wenzel wetting regime. Moreover, the morphological analysis of the surfaces by atomic force microscopy allows predicting WCA from a semiempiric model adapted to this material. 相似文献
17.
Reproducibly smooth amino-functionalized surfaces were obtained by deposition of aminopropyltrimethoxysilane (APTMS) at the vapor/solid interface. Characteristics of these amino-functionalized surfaces were evaluated based on atomic force microscopy, water contact angle measurement and X-ray photoelectron spectroscopy. The results showed that APTMS modified surfaces are very homogeneous and the chemical reactivity of modified surfaces can be ensured with high free amino content. Furthermore, for the purpose of tailoring the wettability of silicon surface, dual self-assembled films were achieved by performing reaction between amino-functionalized surface and n-alkanoic acids with different chain length. The wettability of the self-assembled films can be adjusted with altering the hydrocarbon chain length of alkanoic acids. Moreover, cooperation of dual self-assembled films with surface roughening, superhydrophobic surfaces with CA larger than 153 degrees were obtained. Thus, the wettability of modified surfaces can be altered greatly with changing hydrocarbon chain length of self-assembled films. 相似文献
18.
Linda Oberli Dean Caruso Colin Hall Manrico Fabretto Peter J. Murphy Drew Evans 《Advances in colloid and interface science》2014
Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface. 相似文献
19.
Li XM He T Crego-Calama M Reinhoudt DN 《Langmuir : the ACS journal of surfaces and colloids》2008,24(15):8008-8012
Superhydrophobic surfaces in Wenzel and metastable wetting state were prepared and the conversion of such surfaces to ultraphobic surfaces was reported by the application of a fine-scale roughness. Silicon nitride substrates with hexagonally arranged pillars were prepared by micromachining. The two-scale roughness was achieved by coating these substrates with 60 nm silica nanoparticles. The surface was made hydrophobic by silanization with octadecytrichlorosilane (OTS). Wettability studies of the silicon nitride flat surface, silicon nitride pillars, and the surfaces with two-scale roughness showed that a two-scale roughness can effectively improve the hydrophobicity of surfaces with a higher apparent contact angle and reduced contact angle hysteresis when the original rough surface was in a metastable or Wenzel state. This study shows the pathway of converting a metastable hydrophobic surface to an ultraphobic surface by the introduction of a fine-scale roughness, which adds to the literature a new aspect of fine-scale roughness effect. 相似文献
20.
Subramanian RS Moumen N McLaughlin JB 《Langmuir : the ACS journal of surfaces and colloids》2005,21(25):11844-11849
The hydrodynamic force experienced by a spherical-cap drop moving on a solid surface is obtained from two approximate analytical solutions and used to predict the quasi-steady speed of the drop in a wettability gradient. One solution is based on approximation of the shape of the drop as a collection of wedges, and the other is based on lubrication theory. Also, asymptotic results from both approximations for small contact angles, as well as an asymptotic result from lubrication theory that is good when the length scale of the drop is large compared with the slip length, are given. The results for the hydrodynamic force also can be used to predict the quasi-steady speed of a drop sliding down an incline. 相似文献