首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
The reaction of 1,3,5-triisopropyl-1,3,5-triazacyclohexane (TiPTAC) with [Y(AlMe(4))(3)] resulted in the formation of [(TiPTAC)Y(Me(3)AlCH(2)AlMe(3))(μ-MeAlMe(3))] by C-H activation and methane extrusion. In contrast, the presence of bulkier cyclohexyl groups on the nitrogen atoms in 1,3,5-tricyclohexyl-1,3,5-triazacyclohexane (TCyTAC) led to the formation of the cationic dimethyl complex [(TCyTAC)(2)YMe(2)][AlMe(4)]. The investigations reveal a dependency of the reaction mechanism on the steric bulk of the N-alkyl entity and the solvent employed. In toluene C-H activation was observed in reactions of [Y(AlMe(4))(3)] with 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) and TiPTAC. In THF molecular dimethyl cations, such as [(TCyTAC)(2)YMe(2)][AlMe(4)], [(TMTAC)(2)YMe(2)][AlMe(4)] and [(TiPTAC)(2)YMe(2)][AlMe(4)], could be synthesised by addition of the triazacyclohexane at a later stage. The THF-solvated complex [YMe(2)(thf)(5)][AlMe(4)] could be isolated and represents an intermediate in these reactions. It shows that cationic methyl complexes of the rare-earth metals can be formed by donor-induced cleavage of the rare-earth-metal tetramethylaluminates. The compounds were characterised by single-crystal X-ray diffraction or multinuclear and variable-temperature NMR spectroscopy, as well as elemental analyses. Variable-temperature NMR spectroscopy illustrates the methyl group exchange processes between the cations and anions in solution.  相似文献   

2.
Unsolvated, trinuclear, homometallic, rare-earth-metal multimethyl methylidene complexes [{(NCN)Ln(μ(2)-CH(3))}(3)(μ(3)-CH(3))(μ(3)-CH(2))] (NCN = L = [PhC{NC(6)H(4)(iPr-2,6)(2)}(2)](-); Ln = Sc (2a), Lu (2b)) have been synthesized by treatment of [(L)Ln{CH(2)C(6)H(4)N(CH(3))(2)-o}(2)] (Ln = Sc (1a), Lu (1b)) with two equivalents of AlMe(3) in toluene at ambient temperature in good yields. Treatment of 1 with three equivalents of AlMe(3) gives the heterometallic trinuclear complexes [(L)Ln(AlMe(4))(2)] (Ln = Sc (3a), Lu (3b)) in good yields. Interestingly, 2 can also be generated by recrystallization of 3 in THF/toluene, thereby indicating that the THF molecule can also induce C-H bond activation of 2. Reaction of 2 with one equivalent of ketones affords the trinuclear homometallic oxo-trimethyl complexes [{(L)Ln(μ(2) -CH(3))}(3) (μ(3)-CH(3))(μ(3)-O)] (Ln = Sc(4a), Lu(4b)) in high yields. Complex 4b reacts with one equivalent of cyclohexanone to give the methyl abstraction product [{(L)Lu(μ(2) -CH(3) )}(3) (μ(3) -OC(6)H(9))(μ(3)-O)] (5b), whereas reaction of 4b with acetophenone forms the insertion product [{(L)Lu(μ(2)-CH(3))}(3){μ(3)-OCPh(CH(3))(2)}(μ(3)-O)] (6b). Complex 4a is inert to ketone under the same conditions. All these new complexes have been characterized by elemental analysis, NMR spectroscopy, and confirmed by X-ray diffraction determination.  相似文献   

3.
A polynuclear samarium imido complex [(L)Sm(4)(μ(3)-NSiMe(3))(4)] (2) featuring a cubane-like cluster has been synthesized from the reaction of an organic azide and a samarium(II) complex [(L)SmI(2)Li(2)(THF)(Et(2)O)(2)] (1). In addition, this divalent samarium starting material (1) reacts with azobenzene to give the first example of a well-defined doubly-fused cubic imido-cluster [(L)Sm(6)(μ(3)-NPh)(4)(μ(4)-NPh)(2)I(2)(THF)(2)] (4) in addition to a major cubic complex [(L)Sm(4)(μ(3)-NPh)(4)] (3).  相似文献   

4.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

5.
The steric factors that allow trivalent [(C(5)Me(5))(3)U] (1) to function as a three-electron reductant with C(8)H(8) to form tetravalent [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-C(8)H(8))] (2) have been explored by examining the synthesis and reactivity of the intermediate, "[(C(5)Me(5))(2)(C(8)H(8))U]" (3), and the slightly less crowded analogues, [(C(5)Me(5))(C(5)Me(4)H)(C(8)H(8))U] and [(C(5)Me(4)H)(2)(C(8)H(8))U], that have, successively one less methyl group. The reaction of [{(C(5)Me(5))(C(8)H(8))U(μ-OTf)}(2)] (4; OTf=OSO(2) CF(3)) with two equivalents of KC(5)Me(5) in THF gave ring-opening to "[(C(5)Me(5))(C(8)H(8))U{O(CH(2))(4)(C(5) Me(5))}]" consistent with in situ formation of 3. Reaction of 4 with two and four equivalents of KC(5)Me(4)H generates two equivalents of [(C(5)Me(5))(C(5)Me(4)H)(C(8)H(8))U] (5) and [(C(5)Me(4)H)(2)(C(8)H(8))U] (6), respectively, which in contrast to 3 were isolable. Tetravalent 5 reduces phenazine and PhEEPh (E=S, Se, and Te) to form the tetravalent uranium reduction products, [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-C(12)H(8)N(2))] (7), [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-SPh)(2)] (8), [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-SePh)(2)] (9), and [{(C(5)Me(5))(C(8)H(8))U}(2)(μ-TePh)(2)] (10), consistent with sterically induced reduction. In contrast, the less sterically crowded 6 does not react with these substrates.  相似文献   

6.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

7.
The tetranuclear complexes [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)Ru Cl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)- CH=CH-1,4)] (3 a) and [{(PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (3b), which contain vinylpyridine ligands that connect peripheral Ru(PiPr(3))(2)(CO)Cl units to a central divinylphenylene-bridged diruthenium core, have been prepared and investigated. These complexes, in various oxidation states up to the tetracation level, have been characterized by standard electrochemical and spectroelectrochemical techniques, including IR, UV/Vis/NIR and ESR spectroscopy. A comparison with the results for the vinylpyridine-bridged dinuclear complex [PiPr(3))(2)(CO)ClRu(mu-CH=CHpy)RuCl(CO)(PPh(3))(2)(CH=CHPh)] (6) and the divinylphenylene-bridged complexes [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,4)] (8a) and [{(EtOOCpy)(CO)Cl(PPh(3))(2)Ru}(2)(mu-CH=CH-C(6)H(4)-CH=CH-1,3)] (8b), which represent the outer sections (6) or the inner core (8a,b) of complexes 3a,b, and with the mononuclear complex [(EtOOCpy)(CO)(PPh(3))(2)RuCl(CH=CHPh)] (7) indicate that every accessible oxidation process is primarily centred on one of the vinyl ligands, with smaller contributions from the metal centres. The experimental results and quantum chemical calculations indicate charge- and spin-delocalization across the central divinylphenylenediruthenium part of 3a,b or the styrylruthenium unit of 6, but not beyond. The energy gap between the higher lying styryl- or divinylphenylenediruthenium-based and the lower occupied vinylpyridineruthenium-based orbitals increases in the order 6<3 b<3 a and thus follows the conjugation within the non-heteroatom-substituted aromatic vinyl ligand.  相似文献   

8.
The metallaligand [(PdIL(2))(3)(C(6)Me(3)-1,3,5)] (L(2) = 4,4'-di-tert-butyl-2-2'-bipyridine = tbbpy) reacts with TlOTf to afford the complex [{(PdIL(2))(3)C(6)Me(3)-1,3,5}Tl]OTf, which exists in the solid state as a 2:1 mixture of monomer and dimer, both showing Tl(I)-I and Tl(I)-η(6)-mesitylene bonds. In solution, only the monomer is observed. Heating of toluene solutions of [(PdIL(2))(3)(C(6)Me(3)-1,3,5)] affords the dinuclear complex [(PdIL(2))(2)(C(6)HMe(3)-1,3,5)].  相似文献   

9.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

10.
Simple silylamine elimination reactions of calix[4]-pyrrole [R(2)C(C(4)H(2)NH)](4) (R = Me (1), {-(CH(2))(5)-}(0.5) (2)) with 2 equiv. of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) (Ln = Nd, Sm, Dy) in reflux toluene, afforded the novel dinuclear alkali metal-free trivalent lanthanide amido complexes (η(5):η(1):η(5):η(1)-R(8)-calix[4]-pyrrolyl){LnN(SiMe(3))(2)}(2) (R = Me, Ln = Nd (3), Sm (4), Dy (5); R = {-(CH(2))(5)-}(0.5), Ln = Nd (6), Sm(7)). The complexes were fully characterized by elemental analyses, spectroscopic analyses and single-crystal X-ray analyses. X-ray diffraction studies showed that each lanthanide metal was supported by bispyrrolyl anions in an η(5) fashion and along with three nitrogen atoms from N(SiMe(3))(2) and two other pyrroyl rings in η(1) modes formed the novel bent-sandwiched lanthanide amido bridged trivalent lanthanide amido complexes, similar to ansa-cyclopentadienyl ligand-supported lanthanide amides with respect to each metal center. The catalytic activities of these organolanthanide complexes as single component l-lactide polymerization catalysts were studied.  相似文献   

11.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

12.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

13.
Three novel tetranuclear vanadium(III) or (IV) complexes bridged by diphenyl phosphate or phosphate were prepared and their structures characterized by X-ray crystallography. The novel complexes are [{V(III)(2)(μ-hpnbpda)}(2){μ-(C(6)H(5)O)(2)PO(2)}(2)(μ-O)(2)]·6CH(3)OH (1), [{V(III)(2)(μ-tphpn)(μ-η(3)-HPO(4))}(2)(μ-η(4)-PO(4))](ClO(4))(3)·4.5H(2)O (2), and [{(V(IV)O)(2)(μ-tphpn)}(2)(μ-η(4)-PO(4))](ClO(4))(3)·H(2)O (3), where hpnbpda and tphpn are alkoxo-bridging dinucleating ligands. H(3)hpnbpda represents 2-hydroxypropane-1,3-diamino-N,N'-bis(2-pyridylmethyl)-N,N'-diacetic acid, and Htphpn represents N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine. A dinuclear vanadium(IV) complex without a phosphate bridge, [(VO)(2)(μ-tphpn)(H(2)O)(2)](ClO(4))(3)·2H(2)O (4), was also prepared and structurally characterized for comparison. The vanadium(III) center in 1 adopts a hexacoordinate structure while that in 2 adopts a heptacoordinate structure. In 1, the two dinuclear vanadium(III) units bridged by the alkoxo group of hpnbpda are further linked by two diphenylphosphato and two oxo groups, resulting in a dimer-of-dimers. In 2, the two vanadium(III) units bridged by tphpn are further bridged by three phosphate ions with two different coordination modes. Complex 2 is oxidized in aerobic solution to yield complex 3, in which two of the three phosphate groups in 2 are substituted by oxo groups.  相似文献   

14.
More usually thought of as a base, the sodium zincate [(TMEDA)·Na(μ-TMP)(μ-(t)Bu)Zn((t)Bu)] 1 can undergo single electron transfer with TEMPO to give [(TMEDA)·Na(μ-TMP)(μ-TEMPO(-))Zn((t)Bu)] 2 and [(TMEDA)·Na(μ-TEMPO(-))(2)Zn((t)Bu)] 3; and with chalcone [PhCOCH=CHPh] gives [{(TMEDA)·Na(μ-TMP)Zn((t)Bu)}(2)(μ-OCPhCH=CHPhCHPhCH=CPh-μ-O)] which contains two chalcone units C-C coupled though their benzylic C atoms.  相似文献   

15.
The reaction of phosphanido complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(PPh(2))] [L = CO (1), CNXylyl (2)] with early transition metal halides in high oxidation states has been carried out. New bimetallic niobocene complexes [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(5))] [M = Nb, L = CO (3), L = CNXylyl (4); M = Ta, L = CO (5), L = CNXylyl (6)] have been successfully synthesized by the reaction with [MCl(5)](2) (M = Nb or Ta). In a similar way [{Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)}(μ-PPh(2))(MCl(4))] [M = Ti, L = CO (13), CNXylyl (14); M = Zr, L = CO (15), CNXylyl (16)] were synthesized using MCl(4) (M = Ti or Zr). Solutions of complexes 4-6 in chloroform produced new ionic derivatives [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(H)Ph(2))(L)] [MCl(6)] [M = Nb, L = CO (7), L = CNXylyl (8); M = Ta, L = CO (9), L = CNXylyl (10)]. Ionic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(P(Cl)Ph(2))(L)] [NbCl(4)O(thf)] [L = CO (11), CNXylyl (12)] were formed from solutions in thf - rapidly in the case of 3 but more slowly for 4. New heterometallic complexes [Nb(η(5)-C(5)H(4)SiMe(3))(2)(L)(μ-PPh(2)){(Ti(η(5)-C(5)R(5))Cl(3)}] [R = H, L = CO (17), CNXylyl (18); R = CH(3), L = CO (19), CNXylyl (20)] were synthesized by the reaction of 1 or 2 with [Ti(η(5)-C(5)R(5))Cl(3)] (R = H or CH(3)). All of these compounds were characterized by IR and multinuclear NMR spectroscopy, and the molecular structures of 9 and 12 were determined by single-crystal X-ray diffraction.  相似文献   

16.
Reactions of lithium complexes of the bulky guanidinates [{(Dip)N}(2)CNR(2)](-) (Dip=C(6)H(3)iPr(2)-2,6; R=C(6)H(11) (Giso(-)) or iPr (Priso(-)), with NiBr(2) have afforded the nickel(II) complexes [{Ni(L)(μ-Br)}(2)] (L=Giso(-) or Priso(-)), the latter of which was crystallographically characterized. Reduction of [{Ni(Priso)(μ-Br)}(2)] with elemental potassium in benzene or toluene afforded the diamagnetic species [{Ni(Priso)}(2)(μ-C(6)H(5)R)] (R=H or Me), which were shown, by X-ray crystallographic studies, to possess nonplanar bridging arene ligands that are partially reduced. A similar reduction of [{Ni(Priso)(μ-Br)}(2)] in cyclohexane yielded a mixture of the isomeric complexes [{Ni(μ-κ(1)-N-,η(2)-Dip-Priso)}(2)] and [{Ni(μ-κ(2)-N,N'-Priso)}(2)], both of which were structurally characterized. These complexes were also formed through arene elimination processes if [{Ni(Priso)}(2)(μ-C(6)H(5)R)] (R=H or Me) were dissolved in hexane. In that solvent, diamagnetic [{Ni(μ-κ(1)-N-,η(2)-Dip-Priso)}(2)] was found to slowly convert to paramagnetic [{Ni(μ-κ(2)-N,N'-Priso)}(2)], suggesting that the latter is the thermodynamic isomer. Computational analysis of a model of [{Ni(μ-κ(2)-N,N'-Priso)}(2)] showed it to have a Ni-Ni bond that has a multiconfigurational electronic structure. An analogous copper(I) complex [{Cu(μ-κ(2)-N,N'-Giso)}(2)] was prepared, structurally authenticated, and found, by a theoretical study, to have a negligible Cu···Cu bonding interaction. The reactivity of [{Ni(Priso)}(2)(μ-C(6)H(5)Me)] and [{Ni(μ-κ(2)-N,N'-Priso)}(2)] towards a range of small molecules was examined and this gave rise to diamagnetic complexes [{Ni(Priso)(μ-CO)}(2)] and [{Ni(Priso)(μ-N(3))}(2)]. Taken as a whole, this study highlights similarities between bulky guanidinate ligands and the β-diketiminate ligand class, but shows the former to have greater coordinative flexibility.  相似文献   

17.
Ammonolysis of the μ(3)-alkylidyne derivatives [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] produces a trinuclear oxonitride species, [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-N)] (3), via methane or ethane elimination, respectively. During the course of the reaction, the intermediates amido μ-alkylidene [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-CHR)(NH(2))] [(R = H (4), Me (5)] and μ-imido ethyl species [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-NH)Et] (6) were characterized and/or isolated. This achievement constitutes an example of characterization of the three steps of successive activation of N-H bonds in ammonia within the same transition-metal molecular system. The N-H σ-bond activation of ammonia by the μ(3)-alkylidyne titanium species has been theoretically investigated by DFT method on [{Ti(η(5)-C(5)H(5))(μ-O)}(3)(μ(3)-CH)] model complex. The calculations complement the characterization of the intermediates, showing the multiple bond character of the terminal amido and the bridging nature of imido ligand. They also indicate that the sequential ammonia N-H bonds activation process goes successively downhill in energy and occurs via direct hydron transfer to the alkylidyne group on organometallic oxides 1 and 2. The mechanism can be divided into three stages: (i) coordination of ammonia to a titanium center, in a trans disposition with respect to the alkylidyne group, and then the isomerization to adopt the cis arrangement, allowing the direct hydron migration to the μ(3)-alkylidyne group to yield the amido μ-alkylidene complexes 4 and 5, (ii) hydron migration from the amido moiety to the alkylidene group, and finally (iii) hydron migration from the μ-imido complex to the alkyl group to afford the oxo μ(3)-nitrido titanium complex 3 with alkane elimination.  相似文献   

18.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

19.
Paramagnetic (1)H NMR and electron paramagnetic resonance (EPR) spectroscopies and density functional theory (DFT) spin density calculations were selectively performed on the [{(NH(3))(5)Ru}(2)(μ-L)](3+,?4+,?5+) complexes, where L is 2,3,5,6-tetrachloro-, 2,5-dichloro-, 2,5-dimethyl-, and unsubstituted 1,4-dicyanamidobenzene dianion, to characterize the electronic structure of these complexes. EPR spectra of the [{(NH(3))(5)Ru}(2)(μ-L)](3+) complexes in N,N'-dimethylformamide at 4 K showed a ruthenium axial signal, and thus the complexes are [Ru(II),L(2-), Ru(III)] mixed-valence systems. DFT spin density calculations of [{(NH(3))(5)Ru}(2)(μ-L)](3+) where L = 1,4-dicyanamidobenzene dianion gave mostly bridging-ligand centered spin distribution for both vacuum and implicit solvent calculations, in poor agreement with EPR, but more realistic results were obtained when explicit electrostatic interactions between solute and solvent were included in modeling. For the [{(NH(3))(5)Ru}(2)(μ-L)](4+) complexes, EPR spectroscopy showed no signal down to 4 K. Nevertheless, solvent-dependent (1)H NMR data and analysis support a [Ru(III),L(2-), Ru(III)] state. Hyperfine coupling constants (A(c)/h) of trans- and cis-ammine and phenyl hydrogens were determined to be 17.2, 3.8, and -1.5 MHz respectively. EPR studies of the [{(NH(3))(5)Ru}(2)(μ-L)](5+) complexes showed a metal-radical axial signal and based on previously published (1)H NMR data, a [Ru(IV),L(2-), Ru(III)] state is favored over a [Ru(III),L(-), Ru(III)] state.  相似文献   

20.
The heptanuclear aluminium-nitrogen cage compound [(AlMe(2))(4)(AlMe)(3)(NHNMe)(3)(N-NMe)(OMe)] contains the unique hydrazinetriide fragment [N-N(Me)](3-) stabilized by coordination to five Al atoms. It was synthesised by thermolysis of the sesqui-hydrazide Al[(μ-NH-NHMe)(2)AlMe(2)](3) in refluxing toluene in the presence of a small quantity of methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号