首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

2.
Nitrosylation reactions are rare in the context of low valent Re(I)- and Tc(I)-tricarbonyl complexes so far. We herein describe a method for the conversion of a “M(CO)3-moiety” (M = Re, Tc) into a dicarbonyl-nitrosyl moiety “M(CO)2NO”, the synthesis of important precursor complexes and intermediates and possible applications for this new kind of Re- and Tc-chemistry.The behavior of the complex [ReCl3(CO)2(NO)] in water was studied in detail and compared to that of [ReCl3(CO)3]2−. Contrary to the conversion of [ReCl3(CO)3]2− to the mixed aquo-carbonyl complex [Re(OH2)3(CO)3]+ in water, one chloride remains initially bound to the metal center in the dicarbonyl-nitrosyl complex, making [ReCl(OH2)2(CO)2(NO)]+ the main species for further reactions. In this context, we isolated and characterized the complex [Re(μ3-O)(CO)2(NO)]4. Examples of complexes with different bi- and tridentate ligands based on ReCl3(CO)2(NO)] are discussed.For the development of potential new radiopharmaceuticals we also adapted the nitrosylation technique to the n.c.a. level with 99mTc. [99mTc(OH2)3(CO)3]+ served as starting material to form a 99mTc(CO)2(NO)-core. Labelling reactions with ligands such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were performed, resulting in the complexes [99mTc(IDA)(CO)2(NO)], [99mTc(NTA)(CO)2(NO)] and [99mTc(DTPA)(CO)2(NO)]. In this way, the “nitrosyl-approach” adds a new and challenging synthetic tool to the already established organometallic chemistry of Re- and Tc-tricarbonyl complexes.  相似文献   

3.
The synthesis and structural characterization of the neutral rhenium complex fac-[Re(NSO)(CO)3], Re-1, where (NSO) is a tridentate bifunctional chelating agent, 3-(carboxymethylthio)-3-(1H-imidazol-4-yl)propanoic acid (1), is presented. The complex crystallized from methanol–water and its structure was assigned by IR and 1H, 13C NMR spectroscopies and X-ray crystallography. Furthermore, the analogous technetium complex fac-[99mTc(NSO)(CO)3], 99mTc-1, was synthesized in high yield by reacting ligand 1 with the fac-[99mTc(OH2)3(CO)3]+ precursor for 30 min at 85 °C. The tracer complex was found to be more than 95% stable in the L-histidine challenge experiment. Our data indicate that the bifunctional NSO chelating agent 1 can be successfully applied for the development of potential 99mTc-radiopharmaceuticals.  相似文献   

4.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

5.
We have synthesised (Et4N)[ReBr2(NCCH3)2(CO)2] 1 in two steps from [ReBr3(CO)3]2−. Complex 1 is water and air stable and the two Br ligands are easily exchanged for coordinating solvent molecules such as water. The reactivity of 1 with several ligands such as imidazole (imz) and 2-picolinic acid (2-pic) are easily possible with substitution exclusively occurring in trans-position to the carbonyl groups. The resulting complexes [Re(imz)2(NCCH3)2(CO)2]+ and [Re(2-pic)(NCCH3)2(CO)2] have been isolated and structurally characterised. The two acetonitrile ligands are strongly bound and are not substituted under any conditions. Complex 1 represents therefore the new moiety “trans,cis-[Re(NCCH3)2(CO)2]+” which can be considered as a further building block in organometallic chemistry.  相似文献   

6.
Diethylenetriamine pentaacetic acid (DTPA) was labeled with 99mTc in three different ways, resulting in ‘classic’ 99mTc-DTPA, 99mTc(CO)3-DTPA and 99mTc(CO)2(NO)-DTPA. The biodistribution of the formed DTPA-complexes was studied in mice with a special emphasis on the behavior of the novel tricarbonyl and dicarbonyl-nitrosyl complexes, which was clearly differing from that of ‘classic’ 99mTc-DTPA. The conversion of a Tc-tricarbonyl complex to a Tc-dicarbonyl-nitrosyl complex using NO+ reagents offers a synthetic tool for preparing a novel class of 99mTc labeled compounds.  相似文献   

7.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   

8.
The reaction of [NEt4]2[Re(CO)3Br3] with equimolar amount of a tridentate NSO ligand in methanol leads to the formation of neutral tricarbonyl rhenium(I) complexes of the general formula Re(CO)3(NSO), where the NSO ligand is o-C5H4N-CH2CH2-S-CH2CH(NHCOCH3)COOH (L1H), complex 1 or o-C5H4N-CH2CH2-S-C(CH3)2CH(NHCOCH3)COOH (L2H), complex 2. Both complexes have been characterized by elemental analysis and spectroscopic methods, while complex 2 has also been characterized by X-rays analysis. At technetium-99m level, the corresponding fac-[99mTc(CO)3(NSO)] complexes 3 and 4, were obtained in high yield by reacting ligands L1H or L2H with the fac-[99mTc(CO)3(H2O)3]+ precursor in water. Their structure was established by chromatographic comparison to the prototype rhenium complex using high-performance liquid chromatographic techniques.  相似文献   

9.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

10.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

11.
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo.  相似文献   

12.
The first Pd(II) and Pt(II) complexes incorporating diselenophosphate (dsep) ligands are presented. Treatment of M(II) (M = Pd, Pt) salts with two equivalents of the dsep ligand in CH2Cl2 yielded square-planar compounds of the type M[Se2P(OR)2]2 (M = Pd, Pt; R = Et, iPr, nPr) (1a2c). These complexes were characterized by elemental analysis, multinuclear NMR spectroscopy and X-ray diffraction (1b and 2b). The dsep ligands coordinate to the metal in an approximately isobidentate fashion and form four-membered Se–P–Se–M chelate rings. Structural elucidations indicated that minute differences exist in the M–Se bond distances and these were observed from solution 31P NMR studies, which exhibited two sets of satellites arising from one-bond coupling to 77Se nuclei. A packing diagram showed a chain-like motif which was composed of square-planar M[Se2P(OR)2]2 units and occurred via non-covalent Se?Se secondary interactions.  相似文献   

13.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

14.
Here we report the synthesis and characterization by X-ray diffraction, FTIR, UV-Vis and EPR spectroscopies, and the magnetic measurements of two new compounds: [Mn(NCS)2(bpe)2(H2O)2] (1) and [Fe(NCS)2(bpe)2(H2O)2] (2) (bpe = 1,2-bis(4-pyridyl)ethylene). Single-crystal structure analyses reveals discrete octahedral metal units that are assembled into 2D sheets through O-Hw?N(bpe) and O-Hw?S(thiocyanate) hydrogen bonds. The intermetallic M?M distances are 6.90 and 6.87 Å for 1 and 2, respectively. Supramolecular architectures are obtained by connections through H-bonds. Slight interactions are observed for compound 2.  相似文献   

15.
The Lewis acid/base adducts [MCl4{NH(R)(SiR′3)}] (M = Zr, Hf; R = tBu, R′ = Me; R = SiR′3 = SiMe3, SiMe2H) were synthesized by the 1:1 reaction of MCl4 with NH(R)(SiR′3) in dichloromethane solution at room temperature. The decomposition of [MCl4{NH(R)(SiR′3)}] proceeds with the elimination of R′3SiCl, as shown by thermogravimetric analysis. Pyrolysis of the compounds at 620 °C under inert conditions (N2, vacuum) afforded powders of composition [ClMN] or [Cl2MNH]. Preliminary low pressure chemical vapour deposition experiments show that [MCl4{NH(R)(SiR′3)}] deposits thin films of metal nitride contaminated with metal oxide.  相似文献   

16.
Homobimetallic systems where the metals are linked through a pentalenediide ligand, of the type anti-[Pn{M(CO)3}2] (Pn = pentalenediide), which include transition metals of the group VII with M = 25Mn (1), 43Tc (2), 73Re (3) and 107Bh (4), and the syn-[Pn{M(CO)3}2] isomer with M = 25Mn (s1), 43Tc (s2), 73Re (s3) and 107Bh (s4), were studied with relativistic all-electron density functional (DFT) calculations, including spin-orbit (SO) coupling via the two components ZORA Hamiltonian. The electronic structure was studied in detail in the four systems. Broken symmetry calculations were performed for all the paramagnetic systems to verify their mixed-valence character. The infrared (IR) spectra were obtained at the scalar relativistic regime and the UV–Vis was obtained by time-dependent spin-orbit DFT and compared against the experimental data available (only for 1 and 3). The relative binding energy calculations predict that the not yet reported s1, 2, s2, 4 and s4 complexes may be synthesized. Their optical and vibrational properties are described here.  相似文献   

17.
18.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

19.
Refinement of the X-ray crystal structures of Pr[M(CN)6] · 5H2O (M = Cr, Fe, Co) enables their space group to be reassigned to P63/mmc. Spectral characteristics are reported for M = Cr and the distinction between the pentahydrate and tetrahydrate series is clearly made from assignments of the infrared spectra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号