首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Facile ligand substitutions are observed when the neutral ruthenium cyclopropenyl complex (PPh3)[Ru]-CC(Ph)CHCN (1, [Ru] = Tp(PPh3)Ru) is treated with MeCN and pyrazole yielding the nitrile substituted ruthenium cyclopropenyl complex (MeCN)[Ru]-CC(Ph)CHCN (4a) and the ruthenium metallacyclic pyrazole complex (C3H3NN)[Ru]-CC(Ph)CH2CN (7a), respectively. The reactions of Me3SiN3 with 1, 4a and 7a are investigated. Treatment of 1 with Me3SiN3 affords in high yield the cationic N-coordinated nitrile complex {(PPh3)[Ru]NCCH(Ph)CH2CN}N3 (3). Interestingly, the reaction of 4a with Me3SiN3 in CH2Cl2 in the presence of NH4PF6 results in an insertion of four nitrogen atoms into the Ru-Cα bond to form a diastereomeric mixture of the bright yellow zwitterionic tetrazolate complex (MeCN)[Ru]-N4CCH(Ph)CH2CN (6a) in a 3:2 ratio. The reaction of 7a with Me3SiN3 gives the zwitterionic tetrazolate complex (C3H3NNH)[Ru]-N4CCH(Ph)CH2CN (9a). The two cationic tetrazolate complexes {(C3H3NNH)[Ru]-N4(R)CCH(Ph)CH2CN}+ (12a, R = CH3, 12b, R = C6H5CH2) are prepared by electrophilic addition of organic halides to 9a. All of the complexes are identified by spectroscopic methods as well as elemental analysis. Pathways for the synthesis of these compounds are proposed.  相似文献   

4.
5.
The complexes [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2] (1) (Hpz = pyrazole), [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] (2), [ReCl2(HCpz3)(PPh3)][BF4] (3) and [ReCl2(3,5-Me2Hpz)3(PPh3)]Cl (4) were obtained by treatment of the chelate [ReCl22-N,O-N2C(O)Ph}(PPh3)2] (0) with hydrotris(1-pyrazolyl)methane HCpz3 (1,3), pyrazole Hpz (1,2), hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me2pz)3 (4) or dimethylpyrazole 3,5-Me2Hpz (4). Rupture of a C(sp3)-N bond in HCpz3 or HC(3,5-Me2pz)3, promoted by the Re centre, has occurred in the formation of 1 or 4, respectively. All compounds have been characterized by elemental analyses, IR and NMR spectroscopy, FAB-MS spectrometry, cyclic voltammetry and, for 1 · CH2Cl2 and 3, also by single crystal X-ray analysis. The electrochemical EL Lever parameter has been estimated, for the first time, for the HCpz3 and the benzoyldiazenide NNC(O)Ph ligands.  相似文献   

6.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

7.
The reaction of the methylidyne-bridged cluster HRu3(CO)10(μ-COMe) (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and Me3NO furnishes HRu3(CO)8(μ-COMe)(bpcd) (2) and HRu3(CO)8(Ph2PH)[μ-PPh2CCC(O)CH2C(O)] (3) as the major and minor products, respectively. The 1H and 31P NMR data indicate that the bpcd ligand in 2 is chelated to one of the ruthenium atoms that is bridged by the hydride and methylidyne ligands. Thermolysis of 2 is accompanied by P-Ph bond cleavage and elimination of benzene to yield Ru3(CO)73-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (4). Compound 4 consists of a triangular ruthenium core that is face-capped by μ3-COMe methylidyne and μ-P(Ph)CC(PPh2)C(O)CH2C(O) phosphido ligands. The kinetics for the conversion of 2 → 4 have been measured in toluene solvent over the temperature range 320-343 K, and based on the observed activation parameters and the inhibitory effect of added CO on the reaction, a rate-limiting step involving a dissociative loss of CO is supported. Heating 4 in the presence of H2 afforded the phosphinidene-capped cluster H3Ru3(CO)73-PPh)[μ-CC(PPh2)C(O)CH2C(O)] (5). Crystallographic analysis of 5 has confirmed the loss of the methylidyne moiety and the cleavage of the phosphido PhP-C(dione) bond, and the presence of three edge-bridging hydrides is supported by 1H NMR spectroscopy. The reaction of 4 with added PPh3 and PMe3 has been investigated; the uptake of a single phosphine ligand occurs regiospecifically at one of the phosphido-bound ruthenium centers to give Ru3(CO)6L(μ3-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (PPh3, 6; PMe3, 7). Compound 6 contains 48e- and exhibits a structural motif similar to that found in 4. Compound 7 readily adds a second PMe3 ligand to yield the bis-substituted cluster Ru3(CO)6(PMe3)22-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (8). The solid-state structure of 8 confirms the loss of two ruthenium-ruthenium bonds and the conversion of the original face-capping μ3-COMe ligand to a μ2-COMe moiety that tethers two non-bonding ruthenium centers. The two PMe3 ligands in 8 coordinate to the same ruthenium center, and the 9e- P(Ph)CC(PPh2)C(O)CH2C(O) ligand binds all three ruthenium atoms through the phosphine, phosphido, alkene, and carbonyl moieties. Near-UV irradiation of 8 leads to loss of CO and polyhedral contraction of the triruthenium frame to yield the 48e- cluster Ru3(CO)5(PMe3)23-COMe)[μ-P(Ph)CC(PPh2)C(O)CH2C(O)] (9).  相似文献   

8.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

9.
The reaction of the formyl-capped cluster HC(O)CCo3(CO)9 (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the presence of added Me3NO leads to the production of the disubstituted cluster HC(O)CCo3(CO)7(bpcd) (2). Thermolysis of 2 in toluene at 60 °C gives the methylidyne-capped cluster HCCo3(CO)7(bpcd) (4) and the phosphido-bridged cluster Co3(CO)7221-P(Ph)CC(PPh2)C(O)CH2C(O)] (5). Cluster 4 has been independently prepared from HCCo3(CO)9 and bpcd and shown to serve as the precursor to 5. The new clusters 2, 4, and 5 have been isolated and characterized in solution by IR and NMR (1H and 31P) spectroscopies and their solid-state structures have been established by X-ray diffraction analyses. Both clusters 2 and 4 contain 48e- and exhibit triangular Co3 cores with a chelating and bridging bpcd ligand in the solid state, respectively. The structure of 5 provides unequivocal support for the loss of the methylidyne capping ligand and P-Ph bond cleavage attendant in the activation of 4 and confirms the presence of the face capping seven-electron μ221-P(Ph)CC(PPh2)C(O)CH2C(O) ligand in the final product. The fluxionality displayed by the bpcd ligand in clusters 2 and 4 and the decarbonylation behavior of the formyl moiety in the former cluster are discussed relative to related alkylidyne-capped Co3 derivatives.  相似文献   

10.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

11.
The reactions of [PtMe2(μ-SMe2)]2 with imines 4-ClC6H4CHNCHRCO2Me (R = H (1a), Me (1b), iPr (1c), CH2C6H4(4’-OH) (1d), C6H5 (1e), CH2C6H5(1f)) derived from natural amino acids produced under mild conditions cyclometallated platinum(II) compounds [PtMe{κ2-(C,N)-4-ClC6H3CHNCHRCO2Me}(SMe2)] (2a-2f). These compounds gave the corresponding phosphine derivatives [PtMe{κ2-(C,N)-4-ClC6H3CHNCHRCO2Me}(PPh3)] (3a-3f). The corresponding cyclometallated platinum(IV) compounds [PtMe2I{κ2-(C,N)-4-ClC6H3CHNCHRCO2Me}(PPh3)] (4) arising from intermolecular oxidative addition of methyl iodide were obtained with a high degree of stereo selectivity. Analogous results were obtained for imine 2,6-Cl2C6H3CHNCH(CH2C6H5)CO2Me (1g) in a process involving intramolecular oxidative addition of a C-Cl bond. The obtained compounds were fully characterized including structure determinations for compounds 3f, 4d and 4f.  相似文献   

12.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

13.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

14.
The Rh(III)-thiolate complex [TpRh(SPh)2(MeCN)] (2; Tp = hydrotris(3,5-dimethylpyrazolyl)borate) readily undergoes substitution of MeCN by XyNC (Xy = 2,6-dimethylphenyl) to give the isocyanide complex [TpRh(SPh)2(XyNC)] (3), whereas reaction of 2 with terminal alkynes results in the formation of the rhodathiacyclobutene complex [TpRh(SPh){η2-CHCR(SPh)}] (4; R = aryl, alkyl). Molecular structures of 3 and 4 (R = CH2Ph) have been determined by single crystal X-ray diffraction. Complex 2 as well as [TpRh(cyclooctene)(MeCN)] have been found to catalyze regioselective addition of benzenethiol to terminal alkynes RCCH at 50 °C to give R(PhS)CCH2 in moderate to high yields. The above products are selectively formed when R = CH2Ph and n-C6H13, while cis-RCHCHSPh and RC(SPh)2CH3 are also obtained as by-products when R = p-MeOC6H4. Catalytic cycle involving 2 and 4 is proposed based on the mechanistic studies using NMR measurement.  相似文献   

15.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

16.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

17.
The reactions of NiII[(PPh2)2N]2 (2) with various reagents are described. Addition of two moles of carbon monoxide to 2, at 20 °C and atmospheric pressure leads to the redox coupling of dppa ligands and formation of zero-valent nickel complex (CO)2Ni(Ph2PNPPh2PPh2NPPh2) (4). The nickel atom in 4 has a tetrahedral coordination and is incorporated into the NiP4N2 ring adopting a distorted chair conformation with phosphorus-phosphorus bond length 2.2777(5) Å. Contrary to CO, sulphur dioxide reacts with 2 to form simple adduct (SO2)NiII[(PPh2)2N]2. The reaction of 2 with allyl bromide runs as alkylation of dppa ligand to form All-N(PPh2)2NiBr2. The reduction of 2 with metallic sodium in THF gives Ni(0) complex, HN(PPh2)2Ni(Ph3P)2 (7). The electrochemical reduction of 2 in CH2Cl2 takes place in two steps: reversible one-electron and quasi-reversible three-electron step.  相似文献   

18.
Thermolysis of the mixed-metal cluster PhCCo2MoCp(CO)8 (1) with the diphosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in CH2Cl2 leads to the sequential formation of the phosphido-bridged cluster Co2MoCp(CO)5221-C(Ph)CC(PPh2)C(O)OC(O)](μ-PPh2) (3) and the bis(phosphido)-bridged cluster Co2MoCp(CO)4311-C(Ph)CCC(O)OC(O)](μ-PPh2)2 (4). 3 and 4 have been isolated and characterized in solution by IR and NMR (1H, 13C, and 31P) spectroscopies, and the solid-state structures have been established by X-ray diffraction analyses. Both clusters contain 48e- and exhibit triangular Co2Mo cores. The structure of 3 reveals the presence of a phosphido moiety that bridges the Co-Co vector and a six-electron μ221-C(Ph)CC(PPh2)C(O)OC(O) ligand that caps one of the Co2Mo faces. The X-ray structure of 4 confirms that the five-electron η311- C(Ph)CCC(O)OC(O) ligand is σ-bound to the two cobalt centers in an η1 fashion and π-coordinated to the molybdenum center through a traditional η3-allylic interaction. The reaction between PhCCo2MoCp(CO)8 and the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) proceeds similarly, furnishing the phosphido-bridged cluster Co2MoCp(CO)5221-C(Ph)CC(PPh2)C(O)OCH(OMe)](μ-PPh2) (6), followed by conversion to Co2MoCp(CO)4311-C(Ph)CCC(O)OCH(OMe)](μ-PPh2)2 (7). The identities of clusters 6 and 7 have been ascertained by solution spectroscopic methods and X-ray crystallography. The overall molecular structure of cluster 6 is similar to that of cluster 3, except that the P-C(furanone ring) bond cleavage occurs with high regioselectivity and high diastereoselectivity. The cleavage of the remaining P-C(furanone ring) bond in cluster 6 gives rise to the bis(phosphido)-bridged cluster 7, whose structure is discussed relative to its bma-derived analogue 4. The diastereoselectivity that accompanies the formation of 6 and 7 is discussed relative to steric effects within the Co2Mo polyhedron. The cyclic voltammetric properties of cluster 3 have been examined, with three well-defined one-electron processes for the 0/+1, 0/−1, −1/−2 redox couples found. The composition of the HOMO and LUMO in 3 was established by extended Hückel MO calculations, with the data discussed relative to the parent tetrahedrane cluster 1.  相似文献   

19.
Reactions of Li2[PdCl4] with N-(aroyl)-N′-(2,4-dimethoxybenzylidene)hydrazines (H2L = (4-R-C6H4)C(O)NHNCH(2,4-(CH3O)2C6H3)) in presence of PPh3 have provided cyclopalladated complexes having the general formula [PdL(PPh3)] (1, 2 and 3 where R = OCH3, CH3 and Cl, respectively) and a coordination complex trans-[Pd(HL)(PPh3)2Cl] (4 where R = NO2). The complexes have been characterized by elemental analysis, infrared, 1H NMR and electronic absorption spectroscopy. X-ray structures of all the complexes have been determined. In 1, 2 and 3, the C,N,O-donor dianionic ligand (L2−) forms two fused five-membered chelate rings at the metal centre. On the other hand, the monoanionic ligand (HL) acts as deprotonated amide N-donor in 4. The strong electron withdrawing effect of the nitro group on the aroyl fragment is possibly responsible for the monodentate amide N-coordinating behavior of HL in 4. The orientation of the 4-methoxy group in 1 is different than that in 2 and 3 due to intramolecular C-H?π interaction in the last two complexes. The structure of 4 shows an apical C-H?Pd interaction involving the azomethine (-CHN-) group of HL. In the crystal lattice of all the structures, various types of intermolecular non-covalent interactions are present. The self-assembly of the molecules of 1, 2 and 3 leads to two-dimensional networks. The same network observed for 2 and 3 reflects the interchangeability of the chloro and methyl groups due to their similar volumes. In the case of 4, the complex and the water molecules present in the crystal lattice form parallel homo-chiral helices and finally interhelical interactions lead to a three-dimensional network.  相似文献   

20.
Cyclopalladated complexes with the Schiff base N-(benzoyl)-N-(2,4-dimethoxybenzylidene)hydrazine (H2L, 1) have been described. The reaction of 1 with Li2[PdCl4] in methanol yields the complex [Pd(HL)Cl] (2). [Pd(HL)(CH3CN)Cl] (3) has been prepared by dissolving 2 in acetonitrile. In methanol-acetonitrile mixture, treatment of 2 with two mole equivalents of PPh3 produces [PdL(PPh3)] (4) and that with one mole equivalent of PPh3 produces [Pd(HL)(PPh3)Cl] (5). Crystallization of 2 from dmso-d6 results into isolation of [Pd(HL)((CD3)2SO)Cl] (6). In 2, the monoanionic ligand (HL) is C,N,O-donor and the Cl-atom is trans to the azomethine N-atom. In 3, 5 and 6, HL is C,N-donor and the Cl-atom is trans to the metallated C-atom. The remaining fourth coordination site is occupied by the N-atom of CH3CN, the P-atom of PPh3 and the S-atom of (CD3)2SO in 3, 5 and 6, respectively. Thus on dissolution in acetonitrile and dmso and in reaction with stoichiometric PPh3 the incoming ligand imposes a rearrangement of the coordinating atoms on the palladium centre. On the other hand, in presence of excess PPh3 deprotonation of the amide functionality in 2 occurs and the Cl-atom is replaced by the P-atom of PPh3 to form 4. Here the dianionic ligand (L2−) remains C,N,O-donor as in 2. The compounds have been characterized with the help of elemental analysis (C, H, N), infrared, 1H NMR and electronic absorption spectroscopy. Molecular structures of 3, 4, and 6 have been determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号