首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ambient pressure chemical hydrogenation using p-toluene sulfonyl hydrazide (TSH) via thermal diimide formation (N2H2) permitted reduction of double bonds of poly(myrcene) (poly[Myr]) and poly(farnesene) (poly[Far]). Both pendent and backbone double bonds in poly(Myr) (Mn = 56 kg/mol) and poly(Far) (Mn = 62 kg/mol) synthesized by conventional free radical polymerization were hydrogenated to almost completion. Furthermore, TSH semi-batch addition efficiently hydrogenated double bonds, while avoiding undesired autohydrogenation of diimides that occurred in batch mode. Thermal stability improved for hydrogenated poly(Myr) and poly(Far), where temperature at 10% weight loss (T10%) increased from 188 to 404°C for poly(Myr) and from 310 to 379°C for poly(Far). Tgs of poly(Myr) and poly(Far) also increased by about 10–25°C, indicating increased stiffness after hydrogenation. Finally, viscosities of poly(Myr) and poly(Far) were also increased after hydrogenation, and a greater increase was observed for poly(Myr) (by two orders of magnitude from 102 to 104 Pa s) due to its Mn being much higher than its entanglement molecular weight. Poly(Far) viscosity only increased by 1.5 times after hydrogenation (~104 Pa s), comparable to the poly(Myr) after hydrogenation, suggesting unsaturated poly(Far) was more entangled than unsaturated poly(Myr) because of its longer side chains.  相似文献   

2.
Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.  相似文献   

3.
Several issues need to be considered concerning chemical labeling strategies in proteomics. Some of these are labeling specificity, possible side reactions, completeness of reaction, recovery rate, conserving integrity of sample, hydrolysis of peptide bonds at high pH, and signal suppression in mass spectrometry (MS). We tested the effects of different reaction conditions for 2-methoxy-4,5-dihydro-1H-imidazole (Lys Tag) derivatization of the ?-amine group of lysine (K) residues. By using nanoflow LC–electrospray ionization-MS (LC–ESI-MS) and MS/MS in combination with MSight 2-D image analysis, we found that standard Lys Tag derivatization processes and conditions induce side reactions such as (i) Lys Tag labeling of the N-terminus, (ii) methylation of internal aspartic acid (D), glutamic acid (E) and C- and N-peptide termini and (iii) deamidation of asparagine (N) and glutamine (Q). We found temperature and pH to be the main variables to control side reactions. Lowering the reaction temperature from 55 °C to room temperature reduced deamidation from 22.8 ± 1.4% (SEM) to 7.7 ± 5.5% (SEM) and almost totally blocked methylation (7.0 ± 1.2% (SEM) to 0.4 ± 0.4% (SEM) of the internal acidic amino acids (D and E) at high pH. We conclude that lowering the reaction temperature minimizes undesired side reactions during Lys Tag derivatization in solution.  相似文献   

4.
X-Ray Structure of [{LiOC6H2-2,4,6-(CH3)3}4(THF)3] The title compound crystallized from a THF/OEt2 solution. Its crystal structure (monoclinic, P21/c, a = 21.362(3), b = 13.441(2), c = 17.188(2) Å, β = 98.39(1)°, Z = 4, R = 0,0911, wR2 = 0,2562) is built up by cuban-like tetrameric units. Three of the four Li cations attain a coordination number of four by binding to an additional THF molecule. Li(4) without THF coordination has a short distance to one ortho-methyl group (Li(4)…C(27) 2.669(10) Å). The Li–Oph bonding distances vary from 1.869(10) to 2.051(10) Å (average 1.97 Å); the average bonding distance for Li–OTHF is 2.012(10) Å. Averaged bonding angles for Li–Oph–Li′ and Oph–Li–O′ph amount to 84.4(4)° and 95.4(4)°, respectively. The Li…Li distances significantly differ from each other. They range from 2.556(12) to 2.739(11) Å (average 2.65(1) Å).  相似文献   

5.
The reduction of bromide solutions of various metals with the silver (walden) reductor is described. Iron(III) is quantitatively reduced to iron(II) in 0.1–4 M HBr; similarly, copper(II) is reduced to copper(I) in > 1.5 M HBr, and vanadium.(V) to vanadium(IV) and uranium(VI) to uranium(IV) in > 0.3 M HBr. Tin(IV) is only partly reduced to tin(II) below 6M HBr. Reduction of molybdenum(VI) to molybdenum(V) requires heating, whereas reduction of tungsten(VI) is never quantitative. Suitable conditions for the titrations are described.  相似文献   

6.
Contributions to the Chemistry of Transition Metal Alkyl Compounds. 58 On 2-(Dimethylaminomethyl)ferrocenyl Compounds of Vanadium, Molybdenum, Tungsten, Thorium, and Uranium Earlier results according to which dimethylaminomethylferrocenyl groups (FcN) are able to form stable organometallic chelate compounds were confirmed by synthesis of the heterobimetallic chelate compounds (FcN)2VO · Li(acac) II , (FcN)MoO2(acac) III , (FcN)WOCl3 IV , (FcN)Th(acac)3 V , and (FcN)UO2(acac) VI from the corresponding metal acetylacetonates or oxidchlorides and (FcN)Li I . The new compounds were characterized by elemental analysis, the i.r., 1H-n.m.r., and electron spectra and by their effective magnetic moments.  相似文献   

7.
Two polyimides, PI(DAT-6FDA) and PI(DAPT-6FDA), from N-(2,4-diaminophenyl)-N,N-diphenylamine (DAT) or N-(4-(2′,4′-diaminophenoxy)phenyl-N,N-diphenylamine (DAPT) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) were prepared to clarify the structural effect on the resulting memory properties. The memory device based on PI(DAT-6FDA) showed an unstable volatile behavior, while the device based on PI(DAPT-6FDA) with a more bulky donor (D) unit exhibited a stable non-volatile FLASH type memory characteristic with a long retention time over 104 s. The theoretical simulation based on the density functional theory (DFT) suggested that the greater distinct charge separation between the ground and charge transfer (CT) states led to a highly stable memory behavior. Also, it was clarified that PI(DAPT-6FDA) had a highly twisted conformation compared to PI(DAT-6FDA) in the ground state, and a more twisted dihedral angle between the D and acceptor (A) units was induced in the CT state, which led to the non-volatile memory characteristic.  相似文献   

8.
A new method that utilizes p-dimethylaminobenzaldehyde-modified nanometer SiO2 (SiO2-p-DMABD) as a solid phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The preconcentration conditions of analytes were investigated, including the pH value, the shaking time, the mass of sorbent, the sample flow rate and volume, the elution condition and the interfering ions. The adsorption capacity of nanometer SiO2-p-DMABD was found to be (mg g− 1) Cr(III): 6.2, Cu(II): 18.6, Fe(III): 4.7 and Pb(II): 6.0 at pH 4. The adsorbed metals were quantitatively eluted with 4 mL of 1.0 mol L− 1 HCl. According to the definition of IUPAC, the detection limits (3σ) of this method for Cr(III), Cu(II), Fe(III) and Pb(II) were 0.79, 1.27, 0.40 and 1.79 ng mL− 1, respectively. The proposed method achieved satisfied results when it was applied to the determination of trace Cr(III), Cu(II), Fe(III) and Pb(II) in biological and water samples.  相似文献   

9.
Ring-opening suspension polymerization of l-lactide in supercritical CO2 (scCO2) was investigated in the presence of different stabilizer architectures based on poly(dimethyl siloxanes) (PDMS). Two amphiphilic AB type block copolymers, a graft copolymer, and an ester-capped PDMS were selected to find their efficacy as stabilizers for the synthesis of poly(l-lactide) (PLLA) in scCO2. The stabilizer’s efficiency was analyzed in terms of the molecular weight, yield, and particle morphology of PLLA. The block copolymers, poly(dimethylsiloxane)-b-poly(acrylic acid) (PDMS-b-PAA) and poly(dimethylsiloxane)-b-poly(methacrylic acid) (PDMS-b-PMA) were found to be effective, leading to the formation of fine, discrete PLLA microparticles. On the other hand, the graft copolymer, poly(dimethylsiloxane-g-pyrrolidonecarboxylic acid) (PDMS-g-PCA) and acetylated PDMS (PDMS-OAc) failed to give an enough stabilization to the PLLA due to their short polymer-philic chains, resulting in hard agglomerates.  相似文献   

10.
The new [Li(DME)3+] salt of the previously-known tetra(tert-butyl)erbate(III) anion [Er(t-Bu)4] has been prepared and structurally characterized. The erbium(III) center is ligated by four tert-butyl groups in an approximately tetrahedral arrangement. The C–Er–C angles between the tert-butyl groups range from 108.8(3)° to 111.2(3)° and the Er–C distances range from 2.352(6) to 2.395(6) Å. The lithium cation is surrounded by three DME molecules, which form a distorted octahedral coordination sphere. Attempts to oxidize the analogous terbate complex [Li(DME)3][Tb(t-Bu)4] and its cerium analog to electrically neutral tetra(alkyl)lanthanide(IV) compounds are described.  相似文献   

11.
A pressure‐controlled procedure for the SN1 reaction of rac‐1‐[(dimethylamino)methyl]‐2‐(tributylstannyl)ferrocene ( 1 ) to rac‐1‐(phthalimidomethyl)‐2‐(tributylstannyl)ferrocene ( 2 ) was developed. Pd0‐Catalyzed Stille coupling of 2 with iodobenzene afforded rac‐1‐phenyl‐2‐(N‐phthalimidomethyl)ferrocene ( 5 ) in 74% yield; after trace enrichment by crystallization of the combined mother liquors, one single crystal of each, 5 , catalysis intermediate trans‐iodo(σ‐phenyl)bis(triphenylarsino)palladium(II) ( 7 ), trans‐diiodobis(triphenylarsino)palladium(II) ( 8 ), and rac‐2,2′‐bis(phthalimidomethyl)‐1,1′‐biferrocene ( 9 ) could be isolated by crystal sorting under a microscope and characterized by X‐ray crystal structure analysis. Furthermore, 5 was deprotected to amine ( 11 ), which does even survive the Birch reduction to rac‐1‐(aminomethyl)‐2‐(cyclohexa‐2,5‐dienyl)ferrocene ( 12 ).  相似文献   

12.
Hexacyanoferrate(III) was used as a mediator in the determination of total iron, as iron(II)-1,10-phenanthroline, at a screen-printed carbon sensor device. Pre-reduction of iron(III) at −0.2 V versus Ag/AgCl (1 M KCl) in the presence of hexacyanoferrate(II) and 1,10-phenanthroline (pH 3.5-4.5), to iron(II)-1,10-phenanthroline, was complete at the unmodified carbon electrode surface. Total iron was then determined voltammetrically by oxidation of the iron(II)-1,10-phenanthroline at +0.82 V, with a detection limit of 10 μg l−1.In potable waters, iron is present in hydrolysed form, and it was found necessary to change the pH to 2.5-2.7 in order to reduce the iron(III) within 30 s. A voltammetric response was not found at lower pH values owing to the non-formation of the iron(II)-1,10-phenanthroline complex below pH 2.5.Attempts to incorporate all the relevant reagents (1,10-phenanthroline, potassium hexacyanoferrate(III), potassium hydrogen sulphate, sodium acetate, and potassium chloride) into a modifying coated PVA film were partially successful. The coated electrode behaved very satisfactorily with freshly-prepared iron(II) and iron(III) solutions but with hydrolysed iron, the iron(III) signal was only 85% that of iron(II).  相似文献   

13.
Tin(II) methoxide reacts with N,N′‐dimethylaminoethanol (dmaeH) to yield Sn(dmae)2 ( 1 ) along with small amounts of the hydrolysis product Sn6(O)4(dmae)4 ( 2 ). The geometrically more regular iso‐structural cage Sn6(O)4(OEt)4 ( 3 ) was obtained as the only tractable product isolated from reaction of 2 and Sb(OEt)3, while 1 reacted with CdX2 (X = acac, I) to afford Sn(dmae)2Cd(acac)2 ( 4 ) and Sn(dmae)2CdI2 ( 5 ). The X‐ray structures of 2, 3 and 4 are reported. Decomposition of 4 under aerosol‐assisted chemical vapour deposition conditions leads to amorphous tin oxide films with no detectable cadmium (i.e. ca < 2% cadmium), rather than a stoichiometric Sn:Cd oxide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

15.
The development of contrast agents specifically designed for high‐field magnetic resonance imaging (MRI) is required because the relaxation efficiency of classic Gd(III) contrast agents significantly decreases with increasing magnetic field strengths. With an idea of exploring the unique structure of lanthanide (Ln) 15‐MC‐5 metallacrowns, we developed a series of water‐soluble Gd(III) aqua‐complexes, bearing aminohydroxamate (glycine, α‐alanine, α‐phenylalanine and α‐tyrosine) ligands, with increasing number of water molecules directly coordinated to the Gd(III) ion: Gd(H2O)4[15‐MCCu(II)Glyha‐5](Cl)3 ( 1 (Gd)), Gd(H2O)4[15‐MCCu(II)Alaha‐5](Cl)3 ( 2 (Gd)), Gd(H2O)3[15‐MCCu(II)Phalaha‐5](Cl)3 ( 3 (Gd)) and Gd(H2O)3[15‐MCCu(II)Tyrha‐5](Cl)3 ( 4 (Gd)). In these systems, the Ln(III) central ion is coordinated by five oxygen donor atoms of the ligands and three or four inner‐sphere water molecules. The X‐ray crystal structure of metallacrown Ln(H2O)3,4[15‐MCCu(II)Rha‐5]3+ agrees with density functional theory predictions. The calculations demonstrate that the exchange of coordinated water molecules can proceed easily, resulting in increased relaxivity parameters. The longitudinal relaxivities (r1) of 1 (Gd)– 4 (Gd) in water at ultrahigh magnetic field of 9.4 T were determined to be 11.5, 14.8, 13.9 and 12.2 mM?1 s?1, respectively. The ability to increase the number of Ln(III) inner‐sphere water molecules up to four, the planar metallacrown structure and the rich hydration shell due to strong hydrogen bonds between the [15‐MC‐5] moiety and bulk water molecules provide new opportunities for potential MRI applications.  相似文献   

16.
Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with IC50 values between 1.08 and 4.83 µM. It is noteworthy that in comparison to other platinum and ruthenium enantiomeric complexes, the two enantiomers (1 and 2) do not exhibit different cytotoxic effects. The compounds exhibited stability in biologically relevant media over 48 h as well as inert reactivity to excess glutathione at 37 °C. These results demonstrate that the Au(III) atom, stabilized by the QuinoxP* ligand, can provide exciting compounds for novel anticancer drugs. These complexes provide a new scaffold to further develop a robust and diverse library of chiral phosphorus Au(III) complexes.  相似文献   

17.
Interferences affecting the determination of butyltin species by sodium tetraethylborate (STEB) derivatisation followed by purge-trap preconcentration were systematically studied using synthetic solutions, natural water samples and sediment extracts. Substances that did not cause interferences included most common cations (apart from those metal ions listed below), anions, metalloids and polar organic compounds. Natural organic matter (NOM) specifically interfered with tributyltin (TBT) due to a mechanism involving partitioning of the butyltin to the hydrophobic portions of the NOM. The metal ions Ag(I) (≥2 μM), Cd(II) (≥2 μM), Cu(II) (≥0.5 μM) interfered predominantly with the determination of monobutyltin (MBT) due to catalytic degradation of the STEB reagent. Pb(II) (≥14 μM) interfered with butyltin determination by an unknown mechanism. Other interferences to the purge-trap method were shown to occur in the presence of chelating agents (e.g. EDTA) or hydrophobic liquids such as diesel fuel. A mixture comprising methanol (MeOH), EDTA and Mn(II) was used to partially mask the effect of interfering NOM and metals. Spike recoveries (mean±S.D. of n=7 different samples) of MBT, dibutyltin (DBT) and TBT in contaminated natural water samples were improved from 70±36,90±11 and 91±24 to 102±10,98±3 and 98±4%, respectively. Spike recoveries (mean±S.D. of n=5 different samples) of MBT, DBT and TBT in aliquots of sediment extracts were improved from 86±17,79±18 and 59±32 to 97±6.2,103±3.6 and 103±5.0%, respectively. The ability to analyse larger aliquots of sediment extracts in the presence of the masking mixture improved the detection limit four-fold if MBT and DBT determination was required and 10-fold if only TBT determination was required.  相似文献   

18.
2-tert-Butyldimethylsilyloxymethyl-4-(methoxymethoxy)pent-2-enyl(tributyl)stannane, prepared predominantly as the (Z)-isomer, is transmetallated by tin(IV) chloride to generate an allyltin trichloride which reacts with aldehydes with excellent stereocontrol in favour of (E)-1,5-syn-3-tert-butyldimethylsilyloxymethyl-5-(methoxymethoxy)alk-3-en-1-ols. These were taken through to 3-[(E)-2-(methoxymethoxy)-propylidenyl]-5-alkyl(aryl)tetrahydrofurans and used to prepare more complex 4-(methoxymethoxy)-pent-2-enylstannanes.  相似文献   

19.
The presence of chloride ions in wastewaters in concentrations above 50 mg/L poses interference in several methods used for the measurement of nitrate-nitrogen. The aim of this study was to characterise the reliability and costs of some commonly available methods for the analysis of nitrate concentration in landfill leachate which contains high chloride levels. To investigate the effect of chloride interference, several widely used methods [ion chromatography (IC), continuous flow analysis (CFA), the German standard method (DIN), cuvette test (CUV), standard addition method (SAM) and reflectometric test (REF)] were used to measure the nitrate concentration in synthetic solutions containing varying concentrations of chloride and nitrate-nitrogen. Nitrate recoveries of the various methods were found to decrease in the following rank order: CUV (>95%) > IC (>90%) > CFA (89%) > DIN (88%) > REF (70%) > SAM (<80%). In the second part of the study, the same methods were used to measure nitrate concentrations in samples of biologically nitrified landfill leachate with and without chloride elimination. For leachate samples without chloride elimination, CUV results were well correlated (linear regression) with IC results (slope = 1.02/R2 = 0.99) but to lesser extents with results obtained by CFA (0.91/0.86), DIN (0.89/0.97) and REF (0.86/0.77), and not correlated with SAM (0.74/–1.3). The incurred measurement costs per sample (in Euros) for the methods were as follows: CFA (<0.1) < DIN (0.6) < REF (0.7) < SAM (3) < CUV (3.8) < IC (15). Cuvette tests are recommended as the method of choice due to their accuracy and lower cost than IC.  相似文献   

20.
Bioactive copper(II), iron(III), and manganese(II) 3,5-di-i-propylsalicylate (3,5-DIPS) chelates were investigated in order to determine their ability to inhibit the free radical initiated chain reactions leading to the peroxidation of isopropylbenzene (i-PrPh) and ethylbenzene (EtPh). Quantitative kinetic studies of these chelates established the following order of anti-oxidant reactivities: manganese(II)-(3,5-DIPS)2>iron(III)(3,5-DIPS)3>copper(II)2(3,5-DIPS)4> > 3,5-DIPS acid. The mechanism of anti-oxidant reactivity of these three chelates is established as being due, in part, to their chain-breaking capacity resulting from the chemical reduction of the generated peroxyl radical to yield alkybenzenelhydroperoxides via reaction of the 3,5-DIPS ligand with the peroxyl radical. In the case of manganese(II)3,5-di-i-propylsalicylate, the central metalloelement also interacts with the peroxyl radical. The manganese(II)-(3,5-DIPS)2 and copper(II)2(3,5-DIPS)4 chelates were also found to exhibit alkylhydroperoxide pro-oxidative reactivity leading to the formation of the alkylbenzeneperoxyl radical. In addition, the manganese(II) atom underwent oxidation to manganese(III) with the formation of the alkylbenzenehydroperoxide or superoxide with air oxygen oxidation. Amyl acetate and dipropylamine (n-Pr2NH) were added to the reaction mixture to model the biochemical presence of ester or amine cellular components. Addition of amyl acetate to the reaction mixture increased the anti-oxidant reactivity of manganese(II)-(3,5-DIPS)2 while decreasing its pro-oxidant reactivity. The weaker anti-oxidant reactivites of iron(III)(3,5-DIPS)3 and copper(II)2(3,5-DIPS)4 were less affected by the addition of amyl acetate and the pro-oxidant reactivity of copper(II)2(3,5-DIPS)4 was not changed by the addition of amyl acetate, while the pro-oxidant property of iron(III)(3,5-DIPS)3 was eliminated. In contrast to 2,6-di-t-butyl-4-methylphenol, butylated hydroxy toluene (BHT), anti-oxidant reactivities of copper(II), iron(III), and manganese(II) 3,5-DIPS chelates were dramatically enhanced by the addition of n-Pr2NH to the reaction mixture. It is concluded that all three metalloelement chelates react with and remove alkylbenzeneperoxyl radicals and the hydroperoxyl radical. The manganese(II)-(3,5-DIPS)2 and copper(II)2(3,5-DIPS)4 chelates may also be useful in removing hydroperoxides in vivo. These reactivities, in addition to their established superoxide dismutase (SOD)-mimetic and catalase-mimetic reactivities, are suggested to possibly permit anti-oxidant and pro-oxidant reactivities in aqueous and organic cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号