首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   

2.
Reactions of Ru3(CO)12 with PhTeBr3 and of Re(CO)5Cl with PhTeI in benzene give the stable complexes (CO)2RuBr2(PhTeBr)2 (I) and (CO)3Re(PhTeI)33-I) (II) containing two and three ligands PhTeX (X = Br or I), respectively. The bonds between these ligands and the central metal atom are fairly shortened (on average, Ru-Te, 2.608 ?; Re-Te, 2.7554(12)-2.7634(13) ?). The Te-X bonds in the ligands PhTeBr (2.5163(5) ?) and PhTeI (2.7893(15) ?) are not lengthened appreciably. In complex II, the iodide anion is not coordinated by rhenium, yet being attached through weak secondary bonds to three Te atoms of the three ligands PhTeI.  相似文献   

3.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

4.
Thermal treatment of C9H7SiMe2C9H7 and C9H7Me2SiOSiMe2C9H7 with Ru3(CO)12 in refluxing xylene gave the corresponding diruthenium complexes (E)[(η5-C9H6)Ru(CO)]2(μ-CO)2 [E = Me2Si (1), Me2SiOSiMe2 (2)]. A desilylation product [(η5-C9H7)Ru(CO)]2(μ-CO)2 (3) was also obtained in the latter case. Similar treatment of C9H7Me2SiSiMe2C9H7 with Ru3(CO)12 gave a novel indenyl nonanuclear ruthenium cluster Ru96-C)(CO)143522-C9H7)2 (5) with carbon-centered tricapped trigonal prism geometry, in addition to the diruthenium complex (Me2SiSiMe2)[(η5-C9H6)Ru(CO)]2(μ-CO)2 (4) and the desilylation product 3. Complex 4 can undergo a thermal rearrangement to form the product [(Me2Si)(η5-C9H6)Ru(CO)2]2 (6). The molecular structures of 1, 2, 4, 5, and 6 were determined by X-ray diffraction.  相似文献   

5.
Protonation of the cycloheptatriene complex [W(CO)36-C7H8)] with H[BF4] · Et2O in CH2Cl2 affords the cycloheptadienyl system [W(CO)35-C7H9)][BF4] (1). Complex 1 reacts with NaI to yield [WI(CO)35-C7H9)], which is a precursor to [W(CO)2(NCMe)33-C7H9)][BF4], albeit in very low yield. The dicarbonyl derivatives [W(CO)2L25-C7H9)]+ (L2=2PPh3, 4, or dppm, 5) were obtained, respectively, by H[BF4] · Et2O protonation of [W(CO)2(PPh3)(η6-C7H8)] in the presence of PPh3 and reaction of 1 with dppm. The X-ray crystal structure of 4 (as a 1/2 CH2Cl2 solvate) reveals that the two PPh3 ligands are mutually trans and are located beneath the central dienyl carbon and the centre of the edge bridge. The first examples of cyclooctadienyl tungsten complexes [WBr(CO)2(NCMe)2(1-3-η:5,6-C8H11)] (6) and [WBr(CO)2(NCMe)2(1-3-η:4,5-C8H11)] (7) were synthesised by reaction of [W(CO)3(NCR)3] (R=Me or Prn) with 3-Br-1,5-cod/6-Br-1,4-cod or 5-Br-1,3-cod/3-Br-1,4-cod (cod=cyclooctadiene), respectively. Complexes 6 and 7 are precursors to the pentahapto-bonded cyclooctadienyl tungsten species [W(CO)2(dppm)(1-3:5,6-η-C8H11)][BF4] and [W(CO)2(dppe)(1-5-η-C8H11)][BF4] · CH2Cl2.  相似文献   

6.
A series of multimetallic systems containing silicon-linked cyclopentadienyl dicarbonyl iron moieties including carbosilane dendrimers and cyclic and polymeric siloxanes have been prepared using hydrosilylation reactions. For this purpose the vinyl-substituted silyliron complex (η5-C5H5)Fe(CO)2Si(CH3)2 CHCH2 (1) was prepared by salt elimination reaction between Na[(η5-C5H5)Fe(CO)2] and ClSi(CH3)2CHCH2 and fully characterized. Hydrosilylation reaction of 1 with the appropriate Si-H functionalized molecules in the presence of Karstedt catalyst afforded the novel silyl carbonyl iron-functionalized cyclotetrasiloxane 2, dendrimer 3 and copolymer 4, in which the organometallic units are attached to the silicon-based frameworks through a two-methylene flexible spacer. The electrochemical behaviour of compounds 1-4 has been examined in dichloromethane, tetrahydrofuran and acetonitrile solutions using cyclic voltammetry.  相似文献   

7.
The fulvene complexes [(η6-C5Me4CH2)Re(CO)2(R)] (1a, RI; 1b, RC6F5) react at the exocyclic methylene carbon with a vinylmagnesium bromide solution to produce the anionic species [(η5-C5Me4CH2CHCH2)Re(CO)2(R)]. Protonation with HCl at 0 °C produces the hydride complexes [trans-5-C5Me4CH2CHCH2)Re(CO)2(R)(H)] (2a, RI; 2b, RC6F5). Thermolysis of an hexane solution of the iodo-hydride (2a) under a CO atmosphere yields the complex [(η5-C5Me4CH2CHCH2)Re(CO)3] (3) and [Re(CO)5I] as by-product. Thermolysis of 2b produced three new products, mainly the chelated complex [(η52-C5Me4CH2CHCH2)Re(CO)2] (4) and complex 3, with a non-coordinated olefin group, in moderated yield, and traces of [Re(CO)5(C6F5)]. Thermolysis of an hexane solution of 2 in presence of an excess of PMe3, afforded the phosphine derivative [(η5-C5Me4CH2CHCH2)Re(CO)2(PMe3)] (5). All the complexes were characterized by IR, 1H, 13C and 31P NMR spectroscopies and mass spectrometry. The molecular structure of 4 has also been determined. The molecule exhibits a formal three-legged piano-stool structure, with two CO groups, and the third position corresponding to the η2-coordination of the propenyl side arm of the η5-C5Me4 ring.  相似文献   

8.
Trichloro methyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl3Me] (X = Cl, 2; Me, 3), dichloro dimethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl2Me2] (X = Cl, 4; Me, 5) and tetramethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Me4] (X = Me, 6; Cl, 7) niobium complexes were synthesized by treatment of starting tetrachloro derivatives [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1a; Me, 1b) with dimethyl zinc or chloro methyl magnesium in different proportions and conditions. A mixture of trichloro methyl and dichloro dimethyl tantalum complexes [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4−xMex] (x = 1, 8; 2, 9) in a 2:1 molar ratio was obtained in the reaction of [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4] (1c) with 0.5 equivalents of ZnMe2 in toluene at low temperature. 8 could be isolated as single compound when 1 equivalent of 1c was added to the mixtures of 8 and 9, while the reaction of 1c with 1.5 equivalents of dimethyl zinc gave 9 as unitary product. However, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 0.5 equivalents of alkylating reagent giving the trichloro methyl compound [Ta{η5-C5H3(SiMe3)2}Cl3Me] (10) in good yield. On the other hand, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 2 equivalents of MgClMe in hexane at room temperature giving a mixture of dichloro dimethyl and chloro trimethyl complexes[Ta{η5-C5H3(SiMe3)2}Cl4−xMex] (x = 2, 11; 3, 12), while the use of 4 equivalents of MgClMe converts 1c into the tetramethyl derivative [Ta{η5-C5H3(SiClMe2)(SiMe3)}Me4] (13). Finally, a tetramethyl tantalum complex [Ta{η5-C5H3(SiMe3)2}Me4] (14) was prepared by reaction of [Ta{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1c; Me, 1d) with 5 (X = Cl) or 4 (X = Me) equivalents of MgClMe in diethyl ether (X = Cl) or hexane (X = Me), respectively, as solvent. All the complexes were studied by IR and NMR spectroscopy and the molecular structure of the complex 11 was determined by X-ray diffraction methods.  相似文献   

9.
Treatment of [W(CO)5THF] with diferrocenyl diselenide, Fc2Se2, yielded the novel metal-metal bonded tungsten(I) complex, [W2(μ-SeFc)2(CO)8] (1: Fc = ferrocenyl, [Fe(η5-C5H5)(η5-C5H4)]), which was characterised by NMR and IR spectroscopy, mass spectrometry, and X-ray crystallography. The corresponding tellurium derivative could not be prepared by an analogous route. The X-ray crystal structure of Fc2Te2 has also been determined.  相似文献   

10.
The synthesis and X-ray characterization of ansa-metallocene dichloride titanium and zirconium complexes of the type [Me2Si(η5-C5H2(SiMe3)2)2]MCl2 (M=Zr (1), Ti (2)) are reported. The complexes have been tested for ethylene polymerization.  相似文献   

11.
The new ferrocenylmethylphosphines PH(CH2Fc)2 (1) [Fc = Fe(η5-C5H5)(η5-C5H4)] and P(CH2Fc)3 (2) and the phosphonium salt [P(CH2Fc)3(CH2OH)]I (3) were synthesised from P(CH2OH)3 and [FcCH2NMe3]I. [P(CH2Fc)(CH2OH)3]Cl (4) was obtained from P(CH2Fc)(CH2OH)2, CH2O and HCl. The new phosphines and phosphonium salts were fully characterised by NMR and IR spectroscopy and MS. [Mo(CO)6] reacts with 1 to give [Mo(CO)5{PH(CH2Fc)2}] (5) in high yield, but attempts to employ 2 as a ligand failed. The reaction of [P(CH2Fc)3(CH2OH)]I (3) and [PH(CH2Fc)3]I (obtained in situ from 3 and Na2S2O5) with [WI2(CO)3(NCMe)2] gave the complex salts [P(CH2Fc)3(CH2OH)][WI3(CO)4] (6) and [PH(CH2Fc)3][WI3(CO)4] (7), respectively. [P(CH2Fc)4]I (8) was synthesized from PH2CH2Fc and [FcCH2NMe3]I. Crystal structures were obtained for 1, 3-8.  相似文献   

12.
Reaction of [(CpV)2(B2H6)2], 1 (Cp = η5-C5H5) with four equivalents of [Co2(CO)8] or [Co4(CO)12] in hexane at 70 °C leads to the isolation of the tetranuclear carbonyl cluster, [(η6-C6H5OCo)Co3(CO)9], 2 in modest yield. The geometry of 2 is similar to that of [Co4(CO)12] where all the four Co atoms are arranged in a tetrahedral geometry. The apical cobalt atom in 2 is coordinated to C6H5O ring in a η6-fashion and the other three cobalt atoms are each coordinated to three carbonyl ligands. Compound 2 has been characterized in solution by IR, 1H, 13C NMR and mass spectrometry and the structural types were unequivocally established by crystallographic analysis.  相似文献   

13.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

14.
The structure and dynamic behavior of complex [(η5-C5H4CH3)Cr(CO)2(μ-SBu)Pt(PPh3)2] in solution was studied by multinuclear (1H, 13C, 31P) NMR spectroscopy including a phase-sensitive NOESY experiment. Increasing temperature causes rupture of the Cr-Pt bond in the three-membered ring of the complex and rotation of the S-Pt(PPh3)2 unit around the Cr-S bond line, followed by formation of a new Cr-Pt bond to close the ring. All activation parameters for this dynamic process have been determined.  相似文献   

15.
Treatment of the molybdenum tetracarbonyl complexes of [Mo(CO)4L2] (L2=pyridyl amine Schiff base ligands) with allyl chloride in refluxing THF afforded η3-allyl complexes [MoCl(CO)2L23-allyl)] (1-9). These complexes have been characterised by various techniques including 1H-NMR, IR and FABMS spectroscopies and the single crystal X-ray structure determinations of the complexes [MoCl(CO)2{N(C6H4-2-OMe)C(Me)C5H4N}(η3-C3H5)] (3) and [MoCl(CO)2{N(Me)C(Ph)C5H4N}(η3-C3H5)] (4).  相似文献   

16.
由侧链带有噻吩的环戊二烯基配体C5H5C6H10C4H3S与Fe(CO)5在二甲苯中加热回流,合成了1个新颖的四羰基二铁配合物[(η5-C5H4)C6H10(C4H3S)Fe(CO)2]2。通过元素分析、IR、1H NMR对其结构进行了表征,用X-射线单晶衍射确定了其结构。X-射线单晶衍射表明配合物中有2个桥羰基和2个端羰基,Fe-Fe的键长为0.25465(10)nm。  相似文献   

17.
The Cr-Cr singly-bonded dimers [{η5-RC5H4Cr(CO)3}2] (1, R=Me; 2, R=CO2Et) reacted with an equivalent of elemental selenium in THF at room temperature to give the linear Cr2Se complexes [{η5-RC5H4Cr(CO)2}2Se] (3, R=Me; 4, R=CO2Et), whereas the linear Cr2Se complex (5, R=MeCO) reacted with excess NaBH4, Ph3PCHPh or 2,4-dinitrophenylhydrazine under respective conditions to afford the linear Cr2Se derivatives [{η5-RC5H4Cr(CO)2}2Se] (6, R=MeCH(OH); 7, R=PhCHCMe; 8, R=2,4-(NO2)2C6H3NHNCMe). Similarly, while the butterfly Cr2Se2 complexes [{η5-RC5H4Cr(CO)2}2Se2] (9, R=Me; 10, R=CO2Et) could be produced either by reaction of dimers 1 and 2 with an excess amount of elemental selenium, or by reaction of the linear complexes 3 and 4 with an equivalent of elemental selenium, the butterfly Cr2Se2 derivatives [{η5-RC5H4Cr(CO)2}2Se2] (12, R=MeCH(OH); 13, R=PhCHCMe; 14, R=2,4-(NO2)2C6H3NHNCMe) were yielded by reaction of the butterfly Cr2Se2 complex (11, R=MeCO) with an excess quantity of NaBH4, Ph3PCHPh and 2,4-dinitrophenylhyazine. Both the linear complexes 3, 4, 6-8 and the butterfly complexes 9, 10, 12-14 are new, which have been fully characterized by elemental analysis, spectroscopy and X-ray crystallography.  相似文献   

18.
The manganese cyclophane complex, [(η6-[32](1,3)cyclophane)Mn(CO)3][BF4] 2, was prepared by the reaction of [[32](1,3)cyclophane] 1 with Mn(CO)5FBF3. Reaction of 2 with NaBH3CN yielded the cyclohexadienyl manganese complex [(η5-6H-[32](1,3)cyclophane)Mn(CO)3] 3. Interestingly, treatment of 3 with Mn(CO)5FBF3 gave the bis-manganese complex (η65-6H-[32](1,3)cyclophane)[Mn(CO)3]2[BF4] 4. When NaBH3CN was treated with 4, [(η55-6H,6H-[32](1,3)cyclophane)Mn(CO)3] 5 was isolated as yellow crystals. The structure of compounds 2 and 3 were determined by single-crystal X-ray crystallography.  相似文献   

19.
A reaction of the dimer [Mn(CO)4(SPh)]2 with (PPh3)2Pt(C2Ph2) gave the heterometallic complex (CO)4Mn(μ-SPh)Pt(PPh3)2 (I) and its isomer (CO)3(PPh3)Mn(μ-SPh)Pt(PPh3)(CO) (II). A reaction of complex I with a diphosphine ligand (Dppm) yielded the heterometallic complex (CO)3Mn(μ-SPh)Pt(PPh3)(Dppm) (III). Complexes IIII were characterized by X-ray diffraction. In complex I, the single Mn-Pt bond (2.6946(3) ?) is supplemented with a thiolate bridge with the shortened Pt-S and Mn-S bonds (2.3129(5) and 2.2900(6) ?, respectively). Unlike complex I, in complex II, one phosphine group at the Pt atom is exchanged for one CO group at the Mn atom. The Mn-Pt bond (2.633(1) ?) and the thiolate bridge (Pt-S, 2.332(2) ?; Mn-S, 2.291(2) ?) are retained. In complex III, the Mn-Pt bond (2.623(1) ?) is supplemented with thiolate (Pt-S, 2.341(2) ?; Mn-S, 2.292(2) 0?) and Dppm bridges (Pt-P, 2.240(1)?; Mn-P, 2.245(2) ?). Apparently, the Pt atom in complexes IIII is attached to the formally double bond , as in Pt complexes with olefins.  相似文献   

20.
The bimetallic carbocation complex [{Cp(CO)2Fe}2(μ-C4H7)]PF6 reacted with trifluoroacetic acid to give the mononuclear cationic complex [Cp(CO)2Fe{η2-(CH2CHCH2CH3)}]PF6, which formed yellow orthorhombic crystals in the space group P212121 with a = 7.652(4), b = 13.422(7), c = 14.037(7); α = β = γ = 90.00 and Z = 4. The carbocation is coordinated to the metal in a η2-fashion forming a chiral metallacyclopropane type structure. The β-CH carbon (C9) is disordered over two positions (C9A and C9B), each having about 50% occupancy. This is attributed to there being both the R and S enantioface isomers in equal amounts in the crystal sample. NMR data indicate that the metallacyclopropane structure observed in the solid state is preserved in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号