首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
It has been identified that autapse can modulate dynamics of single neurons and spatial patterns of neuronal networks. In the present paper, based on the results that autapse can induce type II excitability changed to type I excitability, spatial pattern transitions are simulated in a two-dimensional neuronal network composed of excitatory coupled neurons with autapse which can induce excitability transition. Different spatial patterns including random-like pattern, irregular wave, regular wave, and nearly synchronous behavior are simulated with increasing the percentage (σ) of neurons with type I excitability. When noise is introduced, spiral waves are induced. By calculating signal-to-noise ratio from the spatial structure function and the mean firing probability of neurons, regular waves and spiral waves exhibit optimal spatial correlation, implying the occurrence of spatial coherence resonance phenomenon. The changes of mean firing probability of neurons show that different firing frequency between type I excitability and type II excitability may be an important factor to modulate the spatial patterns. The results are helpful to understand the spatial patterns including spiral waves observed in the biological experiment on the rat cortex perfused with drugs which can induce single neurons changed from type II excitability to type I excitability and block the inhibitory couplings between neurons. The excitability transition, absence of inhibitory coupling, noise as well as the autapse are important factors to modulate the spatial patterns including spiral waves.  相似文献   

2.
ABSTRACT: BACKGROUND: Amphioxus, representing the most basal group of living chordates, is the best available proxy for the last invertebrate ancestor of the chordates. Although the central nervous system (CNS) of amphioxus comprises only about 20,000 neurons (as compared to billions in vertebrates), the developmental genetics and neuroanatomy of amphioxus are strikingly vertebrate-like. In the present study, we mapped the distribution of amphioxus CNS cells producing distinctive neurochemicals. To this end, we cloned genes encoding biosynthetic enzymes and/or transporters of the most common neurotransmitters and assayed their developmental expression in the embryo and early larva. RESULTS: By single and double in situ hybridization experiments, we identified glutamatergic, GABAergic/glycinergic, serotonergic and cholinergic neurons in developing amphioxus. In addition to characterizing the distribution of excitatory and inhibitory neurons in the developing amphioxus CNS, we observed that cholinergic and GABAergic/glycinergic neurons are segmentally arranged in the hindbrain, whereas serotonergic, glutamatergic and dopaminergic neurons are restricted to specific regions of the cerebral vesicle and the hindbrain. We were further able to identify a discrete group of GABAergic and glutamatergic interneurons and cholinergic motoneurons at level of the primary motor center (PMC), the major integrative center of sensory and motor stimuli of the amphioxus nerve cord. CONCLUSIONS: In this study, we assessed neuronal differentiation in the developing amphioxus nervous system and compiled the first neurochemical map of the amphioxus CNS. This map is a first step towards a full characterization of the neurotransmitter signature of previously described nerve cell types in the amphioxus CNS, such as motoneurons and interneurons. The most striking discovery was that sub-populations of neurons become differentiated for producing distinctive neurochemicals well before the outgrowth of neurites establishes the definite neurocircuitry.  相似文献   

3.
4.
5.
6.

Background  

The fetal cortical neuroepithelium is a mosaic of distinct progenitor populations that elaborate diverse cellular fates. Ethanol induces apoptosis and interferes with the survival of differentiating neurons. However, we know little about ethanol's effects on neuronal progenitors. We therefore exposed neurosphere cultures from fetal rat cerebral cortex, to varying ethanol concentrations, to examine the impact of ethanol on stem cell fate.  相似文献   

7.

Background  

Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS) was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 (a microglia and macrophage marker). Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation.  相似文献   

8.
9.
The comprehension of neuronal network functioning, from most basic mechanisms of signal transmission to complex patterns of memory and decision making, is at the basis of the modern research in experimental and computational neurophysiology. While mechanistic knowledge of neurons and synapses structure increased, the study of functional and effective networks is more complex, involving emergent phenomena, nonlinear responses, collective waves, correlation and causal interactions. Refined data analysis may help in inferring functional/effective interactions and connectivity from neuronal activity. The Transfer Entropy (TE) technique is, among other things, well suited to predict structural interactions between neurons, and to infer both effective and structural connectivity in small- and large-scale networks. To efficiently disentangle the excitatory and inhibitory neural activities, in the article we present a revised version of TE, split in two contributions and characterized by a suited delay time. The method is tested on in silico small neuronal networks, built to simulate the calcium activity as measured via calcium imaging in two-dimensional neuronal cultures. The inhibitory connections are well characterized, still preserving a high accuracy for excitatory connections prediction. The method could be applied to study effective and structural interactions in systems of excitable cells, both in physiological and in pathological conditions.  相似文献   

10.
Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris-Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.  相似文献   

11.
We show that a ring of unidirectionally delay-coupled spiking neurons may possess a multitude of stable spiking patterns and provide a constructive algorithm for generating a desired spiking pattern. More specifically, for a given time-periodic pattern, in which each neuron fires once within the pattern period at a predefined time moment, we provide the coupling delays and/or coupling strengths leading to this particular pattern. The considered homogeneous networks demonstrate a great multistability of various travelling time- and space-periodic waves which can propagate either along the direction of coupling or in opposite direction. Such a multistability significantly enhances the variability of possible spatio-temporal patterns and potentially increases the coding capability of oscillatory neuronal loops. We illustrate our results using FitzHugh-Nagumo neurons interacting via excitatory chemical synapses as well as limit-cycle oscillators.  相似文献   

12.

Background

Anesthetics dose-dependently shift electroencephalographic (EEG) activity towards high-amplitude, slow rhythms, indicative of a synchronization of neuronal activity in thalamocortical networks. Additionally, they uncouple brain areas in higher (gamma) frequency ranges possibly underlying conscious perception. It is currently thought that both effects may impair brain function by impeding proper information exchange between cortical areas. But what happens at the local network level? Local networks with strong excitatory interconnections may be more resilient towards global changes in brain rhythms, but depend heavily on locally projecting, inhibitory interneurons. As anesthetics bias cortical networks towards inhibition, we hypothesized that they may cause excessive synchrony and compromise information processing already on a small spatial scale. Using a recently introduced measure of signal independence, cross-approximate entropy (XApEn), we investigated to what degree anesthetics synchronized local cortical network activity. We recorded local field potentials (LFP) from the somatosensory cortex of three rats chronically implanted with multielectrode arrays and compared activity patterns under control (awake state) with those at increasing concentrations of isoflurane, enflurane and halothane.

Results

Cortical LFP signals were more synchronous, as expressed by XApEn, in the presence of anesthetics. Specifically, XApEn was a monotonously declining function of anesthetic concentration. Isoflurane and enflurane were indistinguishable; at a concentration of 1 MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimuli in 50% of subjects) both volatile agents reduced XApEn by about 70%, whereas halothane was less potent (50% reduction).

Conclusions

The results suggest that anesthetics strongly diminish the independence of operation of local cortical neuronal populations, and that the quantification of these effects in terms of XApEn has a similar discriminatory power as changes of spontaneous action potential rates. Thus, XApEn of field potentials recorded from local cortical networks provides valuable information on the anesthetic state of the brain.
  相似文献   

13.
Neuromorphic computing seeks functional materials capable of emulating brain-like dynamics to solve computational problems with time and energy efficiency, outclassing current transistor-based hardware architectures. Major efforts are focused on integrating memristive devices into highly regular circuits (i.e., crossbar arrays), where the information representation in individual memristive devices is closely oriented toward the behavior of artificial neurons. However, artificial neurons are rather rigid mathematical concepts than realistic projections of complex neuronal dynamics. Neuroscience suggests that highly efficient information representation on the level of individual neurons relies on dynamical features such as excitatory and inhibitory contributions, irregularity of firing patterns, and temporal correlations. Here, a conductive atomic force microscopy approach is applied to probe the memristive dynamics of nanoscale assemblies of AgPt-nanoparticles at the stability border of the conducting state, where physical forces causing the formation and decay of filamentary structures appear to be balanced. This unveils a dynamic regime, where the memristive response is governed by irregular firing patterns. The significance of such a dynamical regime is motivated by close similarities to excitation and inhibition-governed behavior in biological neuronal systems, which is crucial to tune biological neuronal systems into a state most suitable for information representation and computation.  相似文献   

14.
We demonstrate deterministic extensive chaos in the dynamics of large sparse networks of theta neurons in the balanced state. The analysis is based on numerically exact calculations of the full spectrum of Lyapunov exponents, the entropy production rate, and the attractor dimension. Extensive chaos is found in inhibitory networks and becomes more intense when an excitatory population is included. We find a strikingly high rate of entropy production that would limit information representation in cortical spike patterns to the immediate stimulus response.  相似文献   

15.
We investigate responses of the Hodgkin-Huxley globally neuronal systems to periodic spike-train inputs. The firing activities of the neuronal networks show different rhythmic patterns for different parameters. These rhyth- mic patterns can be used to explain cycles of firing in real brain. These activity patterns, average activity and coherence measure are affected by two quantities such as the percentage of excitatory couplings and stimulus intensity, in which the percentage of excitatory couplings is more important than stimulus intensity since the transition phenomenon of average activity comes about.  相似文献   

16.
Bistable behavior of neuronal complex networks is investigated in the limited-sustained-activity regime when the network is composed of excitatory and inhibitory neurons. The standard stability analysis is performed on the two metastable states separately. Both theoretical analysis and numerical simulations show consistently that the difference between time scales of excitatory and inhibitory populations can influence the dynamical behaviors of the neuronal networks dramatically, leading to the transition from bistable behaviors with memory effects to the collapse of bistable behaviors.
These results may suggest one possible neuronal information processing by only tuning time scales.  相似文献   

17.

Background  

Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF) and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22.  相似文献   

18.
Pre-Bötzinger复合体是兴奋性耦合的神经元网络,通过产生复杂的放电节律和节律模式的同步转迁参与调控呼吸节律.本文选用复杂簇和峰放电节律的单神经元数学模型构建复合体模型,仿真了与生物学实验相关的多类同步节律模式及其复杂转迁历程,并利用快慢变量分离揭示了相应的分岔机制.当初值相同时,随着兴奋性耦合强度的增加,复合体模型依次表现出完全同步的“fold/homoclinic”,“subHopf/subHopf”簇放电和周期1峰放电.当初值不同时,随耦合强度增加,表现为由“fold/homoclinic”,到“fold/fold limit cycle”、到“subHopf/subHopf”与“fold/fold limit cycle”的混合簇放电、再到“subHopf/subHopf”簇放电的相位同步转迁,最后到反相同步周期1峰放电.完全(同相)同步和反相同步的周期1节律表现出了不同分岔机制.反相峰同步行为给出了与强兴奋性耦合容易诱发同相同步这一传统观念不同的新示例.研究结果给出了preBötzinger复合体的从簇到峰放电节律的同步转迁规律及复杂分岔机制,反常同步行为丰富了非线性动力学的内涵.  相似文献   

19.
Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号