首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In this paper the existence results of positive solutions are obtained for second-order boundary value problem
−u″=f(t,u),t∈(0,1),u(0)=u(1)=0,  相似文献   

2.
Let aC[0,1], bC([0,1],(−∞,0]). Let φ1(t) be the unique solution of the linear boundary value problem
u″(t)+a(t)u′(t)+b(t)u(t)=0,t∈(0,1),u(0)=0,u(1)=1.  相似文献   

3.
We prove existence and uniqueness of positive solutions for the boundary value problem
(rN−1φ(u′))′=−λrN−1f(u),u′(0)=u(1)=0,  相似文献   

4.
This paper investigates the existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem with fractional q-derivative
$$\begin{aligned}&D_{q}^{\alpha }u(t)+f(t,u(t))=0, \quad {0<t<1, ~3<\alpha \le 4,} \\&u(0)= D_{q}u(0)=D_{q}^{2}u(0)=0, \quad D_{q}^{2}u(1)=\beta D_{q}^{2}u(\eta ), \end{aligned}$$
where \(D_{q}^{\alpha }\) denotes the Riemann–Liouville q-derivative of order \(\alpha \), \(0<\eta <1\) and \(1-\beta \eta ^{\alpha -3}>0\). Our analysis relies a fixed point theorem in partially ordered sets. An example to illustrate our results is given.
  相似文献   

5.
In this paper we study the existence of periodic solutions of the sixth-order equation
uvi+Auiv+Bu″+u−u3=0,  相似文献   

6.
In this paper we prove the existence of solutions for a hyperbolic hemivariational inequality of the form
u″+Au′+Bu+∂j(u)∋f,  相似文献   

7.
In this paper we study the existence and multiplicity of solutions of the following operator equation in Banach space E:
u=λAu,0<λ<+∞,u∈P?{θ},  相似文献   

8.
We study the positive solution \({u(r,\rho)}\) of the quasilinear elliptic equation
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u^{\prime}|^{\beta-1}u^{\prime})^{\prime}+|u|^{p-1}u=0, & 0 < r < \infty,\\ u(0) = \rho > 0,\ u^{\prime}(0)=0.\end{cases}$$
This class of differential operators includes the usual Laplace, m-Laplace, and k-Hessian operators in the space of radial functions. The equation has a singular positive solution u *(r) under certain conditions on \({\alpha}\), \({\beta}\), \({\gamma}\), and p. A generalized Joseph–Lundgren exponent, which we denote by \({p^*_{JL}}\), is obtained. We study the intersection numbers between \({u(r,\rho)}\) and u *(r) and between \({u(r,\rho_0)}\) and \({u(r,\rho_1)}\), and see that \({p^*_{JL}}\) plays an important role. We also determine the bifurcation diagram of the problem
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u^{\prime}|^{\beta-1}u^{\prime})^{\prime} + \lambda(u+1)^p=0, & 0 < r < 1,\\ u(r) > 0, & 0 \le r < 1,\\ u^{\prime}(0)=0,\ u(1)=0.\end{cases}$$
The main technique used in the proofs is a phase plane analysis.
  相似文献   

9.
In this paper, we consider the obstacle problem for the inhomogeneous p-Laplace equation
$ \text {div}\big(|\nabla u|^{p-2} \nabla u\big)=f\cdot \chi_{ \{u>0\},}相似文献   

10.
Abdulkadir Dogan 《Positivity》2018,22(5):1387-1402
This paper deals with the existence of positive solutions of nonlinear differential equation
$$\begin{aligned} u^{\prime \prime }(t)+ a(t) f(u(t) )=0,\quad 0<t <1, \end{aligned}$$
subject to the boundary conditions
$$\begin{aligned} u(0)=\sum _{i=1}^{m-2} a_i u (\xi _i) ,\quad u^{\prime } (1) = \sum _{i=1}^{m-2} b_i u^{\prime } (\xi _i), \end{aligned}$$
where \( \xi _i \in (0,1) \) with \( 0< \xi _1<\xi _2< \cdots<\xi _{m-2} < 1,\) and \(a_i,b_i \) satisfy   \(a_i,b_i\in [0,\infty ),~~ 0< \sum _{i=1}^{m-2} a_i <1,\) and \( \sum _{i=1}^{m-2} b_i <1. \) By using Schauder’s fixed point theorem, we show that it has at least one positive solution if f is nonnegative and continuous. Positive solutions of the above boundary value problem satisfy the Harnack inequality
$$\begin{aligned} \displaystyle \inf _{0 \le t \le 1} u(t) \ge \gamma \Vert u\Vert _\infty . \end{aligned}$$
  相似文献   

11.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

12.
In this paper, we deal with a class of semilinear parabolic problems related to a Hardy inequality with singular weight at the boundary.
More precisely, we consider the problem
$$\left\{\begin{array}{l@{\quad}l}u_t-\Delta u=\lambda \frac{u^p}{d^2}&\text{ in }\,\Omega_{T}\equiv\Omega \times (0,T), \\u>0 &\text{ in }\,{\Omega_T}, \\u(x,0)=u_0(x)>0 &\text{ in }\,\Omega, \\u=0 &\text{ on }\partial \Omega \times (0,T),\end{array}\right.$$
(P)
where Ω is a bounded regular domain of \({\mathbbm{R}^N}\), \({d(x)=\text{dist}(x,\partial\Omega)}\), \({p > 0}\), and \({\lambda > 0}\) is a positive constant.
We prove that
  1. 1.
    If \({0 < p < 1}\), then (P) has no positive very weak solution.
     
  2. 2.
    If \({p=1}\), then (P) has a positive very weak solution under additional hypotheses on \({\lambda}\) and \({u_0}\).
     
  3. 3.
    If \({p > 1}\), then, for all \({\lambda > 0}\), the problem (P) has a positive very weak solution under suitable hypothesis on \({u_0}\).
     
Moreover, we consider also the concave–convex-related case.
  相似文献   

13.
We consider periodic solutions of the following problem associated with the fractional Laplacian
$$(-\partial _{xx})^s u(x) + F'(u(x))=0,\quad u(x)=u(x+T),\quad \text{ in } \, \mathbb {R}, $$
where \((-\partial _{xx})^s\) denotes the usual fractional Laplace operator with \(0<s<1\). The primitive function F of the nonlinear term is a smooth double-well potential. We prove the existence of periodic solutions with large period T using variational methods. An estimate of the energy of the periodic solutions is also established.
  相似文献   

14.
We use the fixed point index theory of condensing mapping in cones discuss the existence of positive solutions for the following boundary value problem of fractional differential equations in a Banach space E
$$\begin{aligned} \left\{ \begin{array}{ll} -D^{\,\beta }_{0^{+}}u(t)=f(t,u(t)),\quad t\in J, \\ u(0)=u^{\prime }(0)=\theta ,\quad u(1)=\rho \int _{0}^{1}u(t)dt,\\ \end{array} \right. \end{aligned}$$
where both \(2<\beta \le 3\) and \(0<\rho <\beta \) are real numbers, \(J=[0,1]\), \(D^{\,\beta }_{0^{+}}\) is the Riemann–Liouville fractional derivative, \(f : J\times K \rightarrow K\) is continuous, K is a normal cone in Banach space E, \(\theta \) is the zero element of E. Under more general conditions of growth and noncompactness measure about nonlinearity f, we obtain the existence of positive solutions.
  相似文献   

15.
In this paper, we deal with the following nonlinear fractional differential problem in the half-line \({\mathbb{R}^{+}=(0,+ \infty)}\)
$$\left\{\begin{array}{l}D^{\alpha }u(x)+f(x,u(x),D^{p}u(x))=0,\quad x \in \mathbb{R}^{+},\\ u(0)=u^{\prime } \left( 0\right) = \cdots =u^{\left( m-2\right) }(0)=0,\end{array}\right.$$
where \({m\in \mathbb{N}, m \geq 2, m-1 < \alpha \leq m, 0 < p \leq \alpha -1}\), the differential operator is taken in the Riemann–Liouville sense and f is a Borel measurable function in \({\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} ^{+}}\) satisfying certain conditions. More precisely, we show the existence of multiple unbounded positive solutions, by means of Schäuder fixed point theorem. Some examples illustrating our main result are also given.
  相似文献   

16.
In this paper we discuss the existence and the global behavior of positive solutions of the following generalized Lane–Emden system of differential equations:
$$\begin{aligned} -u''= & {} a(x)u^{\alpha }\,v^{r}\quad \text{ in } (0,1), \\ -v''= & {} b(x)u^{s}\,v^{\beta }\quad \, \text{ in } (0,1), \\ u'(0)= & {} v'(0)=0; \quad \, u(1)=v(1)=0, \end{aligned}$$
where \(r,\,s\in {\mathbb {R}}\), \(\alpha ,\,\beta <1\) such that \(\gamma :=(1-\alpha )(1-\beta )-rs>0\) and the nonnegative functions \(a,\,b\) satisfy some conditions related to the Karamata regular variation theory.
  相似文献   

17.
In this paper, we study the existence result for the nonlinear fractional differential equations with p-Laplacian operator
$$\left\{\begin{array}{ll}D_{0^+}^{\beta} \phi_p( D_{0^+}^{\alpha} u(t))=f(t,u(t),D_{0^+}^{\alpha}u(t)), \quad t\in(0,1),\\ D_{0^+}^{\alpha}u(0)=D_{0^+}^{\alpha}u(1)=0,\end{array}\right.$$
where the p-Laplacian operator is defined as \({\phi_p(s) = |s|^{p-2}s,p > 1, \,\,{\rm and}\,\, \phi_q(s) = \phi_p^{-1}(s), \frac{1}{p}+\frac{1}{q} = 1;\, 0 < \alpha, \beta < 1, 1 < \alpha + \beta < 2 \,\,{\rm and}\,\, D_{0^+}^{\alpha}, D_{0^+}^{\beta}}\) denote the Caputo fractional derivatives, and \({f : [0,1] \times \mathbb{R}^2\rightarrow \mathbb{R}}\) is continuous. Though Chen et al. have studied the same equations in their article, the proof process is not rigorous. We point out the mistakes and give a correct proof of the existence result. The innovation of this article is that we introduce a new definition to weaken the conditions of Arzela–Ascoli theorem and overcome the difficulties of the proof of compactness of the projector K P (I ? Q)N. As applications, an example is presented to illustrate the main results.
  相似文献   

18.
In this paper we study the following singular p(x)-Laplacian problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 2\), with smooth boundary \(\partial \Omega \), \(\beta \in C^1(\bar{\Omega })\) with \( 0< \beta (x) <1\), \(p\in C^1(\bar{\Omega })\), \(q \in C(\bar{\Omega })\) with \(p(x)>1\), \(p(x)< q(x) +1 <p^*(x)\) for \(x \in \bar{\Omega }\), where \( p^*(x)= \frac{Np(x)}{N-p(x)} \) for \(p(x) <N\) and \( p^*(x)= \infty \) for \( p(x) \ge N\). We establish \(C^{1,\alpha }\) regularity of weak solutions of the problem and strong comparison principle. Based on these two results, we prove the existence of multiple (at least two) positive solutions for a certain range of \(\lambda \).
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号