首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Asymptotic analyses of the mechanical fields in front of stationary and propagating cracks facilitate the understanding of the mechanical and physical state in front of crack tips, and they enable prediction of crack growth and failure. Furthermore, efficient modelling of arbitrary crack growth by use of XFEM (extended finite element method) requires accurate knowledge of the asymptotic crack tip fields. In the present work, we perform an asymptotic analysis of the mechanical fields in the vicinity of a propagating mode I crack in rubber. Plane deformation is assumed, and the material model is based on the Langevin function, which accounts for the finite extensibility of polymer chains. The Langevin function is approximated by a polynomial, and only the term of the highest order contributes to the asymptotic solution. The crack is predicted to adopt a wedge-like shape, i.e. the crack faces will be straight lines. The angle of the wedge and the order of the stress singularity depend on the hardening of the strain energy function. The present analysis shows that in materials with a significant hardening, the inertia term in the equations of motion becomes negligible in the asymptotic analysis. Hence, there is no upper theoretical limit to the crack speed.  相似文献   

2.
Finite-element simulations are used to model crack propagation across twist-misoriented grain boundaries, which are an important source of toughness in lamellar microstructures such as TiAl. We consider a twist grain boundary (GB) between two adjacent grains, and assume that each grain has a single cleavage orientation. The cleavage planes and GB are modeled as a set of cohesive surfaces, and the crack path and effective toughness of the system are simulated using a dynamic finite-element method (FEM). As the crack approaches the GB under remote mode I loading, it is allowed to either deflect along the GB and/or induce the nucleation of a periodic array of cracks in the adjacent grain. The simulations predict (i) a critical toughness ratio between the GB and the cleavage planes for the crack to propagate into the adjacent grain; (ii) an array of cracks in the GB and the twisted grain; (iii) the macroscopic mode I toughness of the solid as a function of a generalized measure of crack length; and (iv) the influence of GB toughness and twist misorientation on the effective toughness of the solid.  相似文献   

3.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   

4.
The solution of a dynamic problem for calculation of a displacement field on a half-space surface caused by an internal mode I crack opening is presented. The problem is reduced to the system of boundary integral equations (BIEs). The equations of motion are solved with the use of Helmholtz potentials and applying Fourier integral transform. The effects of the crack size, the crack depth and the distance from the crack epicenter to the observation point on the parameters of elastic waves are investigated. It is established that the increasing of the defect size leads to narrowing bandwidth of elastic waves and to lowering of center frequency. The analysis given here can be used for identification of the crack growth during technical diagnostic of an industry objects and structural elements by AE method.  相似文献   

5.
Summary  The problem of an interfacially cracked three-layered structure constructed of a piezoelectric and two orthotropic materials is analyzed using the theory of linear piezoelectricity and fracture mechanics. Anti-plane shear loading is considered, and the integral transform technique is used to determine the stress intensity factor. Numerical examples show the electro-mechanical effects of various material combinations and layer thicknesses on the stress intensity factor. Interesting results are obtained in comparison with earlier solutions for interfacially cracked piezoelectric structures. Received 29 December 2000; accepted for publication 3 May 2001  相似文献   

6.
An analytical solution is presented for an internally pressurized thick-walled spherical shell of an elastic strain-hardening plastic material. A strain gradient plasticity theory is used to describe the constitutive behavior of the material undergoing plastic deformations, whereas the generalized Hooke’s law is invoked to represent the material response in the elastic region. The solution gives explicit expressions for the stress, strain and displacement components. The inner radius of the shell enters these expressions not only in non-dimensional forms but also with its own dimensional identity, unlike classical plasticity-based solutions. As a result, the current solution can capture the size effect. The classical plasticity-based solution of the same problem is shown to be a special case of the present solution. Numerical results for the maximum effective stress in the shell wall are also provided to illustrate applications of the newly derived solution. The new solution can be used to construct improved expanding cavity models in indentation mechanics that incorporate both the strain-hardening and indentation size effects.  相似文献   

7.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

8.
Summary A piezoelectric material layer bonded to an elastic substrate is investigated. The piezoelectric layer contains an edge crack that is perpendicular to the surface of medium. The poling axis of the piezoelectric layer is parallel to its edge. The elastic layer can be an ideal insulator or an ideal conductor. The Fourier transform technique is used to reduce the problem to a solution of singular integral equations. Both impermeable crack and permeable crack assumptions are considered. Stress and electric displacement intensity factors are investigated for different dimensions of the medium. A double-edge cracked symmetric piezoelectric laminate under symmetric electro-mechanical load is also investigated. BLW would like to thank the National Science Foundation of China (#10102004) and the City University of Hong Kong for the support of this work (DAG #7100219). YGS also thanks the Multidiscipline Scientific Research Foundation Project (HIT. MD 2001. 39) of the Harbin Institute of Technology and the SRF for ROCS, SEM.  相似文献   

9.
Deformation and strength behavior of geomaterials in the pre- and post-failure regimes are of significant interest in various geomechanics applications. To address the need for development of a realistic constitutive framework, which allows for an accurate simulation of pre-failure response as well as an objective and meaningful post-failure response, a strain gradient plasticity model is formulated by incorporating the spatial gradients of elastic strain in the evolution of stress and gradients of plastic strain in the evolution of the internal variables. In turn, gradients of only kinematic variables are included in the constitutive equations. The resulting constitutive equations along with the balance of linear momentum for the continuum are cast as a coupled system of equations, with displacements and plastic multiplier appearing as the primary unknowns in the final governing integral equations. To avoid singular stress fields along element boundaries, a finite element discretization of the governing equations would require C2 continuous displacements and C1 continuous plastic multiplier, which is undesirable from a numerical implementation point of view. This issue is naturally resolved when a meshfree discretization is used. Hence the developed model is formulated within the framework of a meshfree environment. The new constitutive model allows an analysis of grain size effects on strength and dilatancy of rocks. The role and effectiveness of the new gradient terms on regularizing the underlying boundary value problems of geomechanics beyond the initiation of strain localization will be assessed in a future paper.  相似文献   

10.
It is experimentally well-known that a crack loaded in mode I+III propagates through formation of discrete fracture facets inclined at a certain tilt angle on the original crack plane, depending on the ratio of the mode III to mode I initial stress intensity factors. Pollard et al. (1982) have proposed to calculate this angle by considering the tractions on all possible future infinitesimal facets and assuming shear tractions to be zero on that which will actually develop. In this paper we consider the opposite case of well-developed facets; the stress field near the lateral fronts of such facets becomes independent of the initial crack and essentially 2D in a plane perpendicular to the main direction of crack propagation.To determine this stress field, we solve the model 2D problem of an infinite plate containing an infinite periodic array of cracks inclined at some angle on a straight line, and loaded through uniform stresses at infinity. This is done first analytically, for small values of this angle, by combining Muskhelishvili's (1953) formalism and a first-order perturbation procedure. The formulae found for the 2D stress intensity factors are then extended in an approximate way to larger angles by using another reference solution, and finally assessed through comparison with some finite element results.To finally illustrate the possible future application of these formulae to the prediction of the stationary tilt angle, we introduce the tentative assumption that the 2D mode II stress intensity factor is zero on the lateral fronts of the facets. An approximate formula providing the tilt angle as a function of the ratio of the mode III to mode I stress intensity factors of the initial crack is deduced from there. This formula, which slightly depends on the type of loading imposed, predicts somewhat smaller angles than that of Pollard et al. (1982).  相似文献   

11.
The paper presents a mechanical model for predicting the cohesive failure of a periodic array of integrated circuit (IC) chips adhesively bonded to a stretched substrate. A unit cell of the layered structure consisting of the IC chips, adhesive layer, and substrate is modeled as an assembly of two elastic Timoshenko beams, representing the chip and substrate, connected by an elastic interface, representing the adhesive. Accordingly, the stresses and energy release rate (ERR) in the adhesive layer – responsible for the premature cracking of the adhesive and debonding of the IC chips – are identified with the corresponding quantities computed for the elastic interface. Expressions for the adhesive stresses and ERR are given in terms of geometrical dimensions and material properties, combined with integration constants obtained numerically via the multi-segment analysis method. For comparison, the stresses in the adhesive are also computed based on a finite element model, and the ERR is evaluated using the virtual crack-closure technique (VCCT). The analytical predictions and numerical results match fairly well, considering the effects of key factors, such as the distance between adjacent chips, the chip size, the material properties of adhesive and substrate. The interaction between the chips is shown to have relevant effects on the adhesive stresses. In particular, only the mode II contributes to the ERR which increases with the ratio of the chip size to the distance between the chips and with the compliance of the adhesive and substrate layers.  相似文献   

12.
The variation of stress field around an oscillating crack tip in a quenched thin glass plate is observed using instantaneous phase-stepping photoelasticity. The successive images around the propagating crack are recorded by a CCD camera that is equipped with a pixelated micro-retarder array. Then, the phase maps of the principal stress difference and the principal direction are easily obtained even though the photoelastic fringes cannot be visualized. The path of the crack growth as well as the stress intensity factors and the crack tip constraint are obtained from these phase distributions. Results show that the mode I stress intensity factor and the crack tip constraint vary remarkably with the crack growth. In addition, the results show that the mode-II stress intensity factor exists even though the crack propagates smoothly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号