首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) with a catalytic amount of Ni(PEt3)2 results in a dinuclear Ni(I) complex from the coupling of the isomer (PEt3)2Ni(eta2-C6H2-3,4-F2), obtained via rearrangement of the aromatic C-H bonds, which demonstrates that Ni(PEt3)2 is kinetically capable of C-H bond activation, even in the presence of C-F bonds. The intermediate [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) was isolated and crystallographically characterized; the mu-eta2:eta2-bonding mode observed is unprecedented in aryne chemistry.  相似文献   

2.
The stoichiometric reaction of 1 equiv of CO with [(U(eta-C8H6{SiiPr3-1,4}2)(eta-Cp*)] affords the linear diuranium ynediolate complex [(U(eta-C8H6{SiiPr3-1,4}2)(eta-Cp*)]2(mu-eta1:eta1-C2O2) which does not react with further CO to give the deltate derivative [(U(eta-C8H6{SiiPr3-1,4}2)(eta-Cp*)]2(mu-eta1:eta2-C3O3). Spectroscopic and computational studies suggest a plausible mechanism for the formation of the deltate complex, in which a "zig-zag" diuranium ynediolate species is the key intermediate.  相似文献   

3.
The reaction of neopentyllithium, Me3CCH2Li, with [(C5Me5)2Sm][(mu-Ph)2BPh2], 1, was investigated as a route to the unsolvated alkyl, [(C5Me5)2Sm(CH2CMe3)]x, and found to generate the first f element trimethylenemethane dianion complex, [(C5Me5)2Sm]2[mu-eta3:eta3-C(CH2)3], 2. Formation of the [C4H6]2- trimethylenemethane ligand from the [C5H11]1- neopentyl precursor can be explained by a combination of a beta-methyl elimination reaction to form isobutene and [(C5Me5)2SmMe]3, 3, with subsequent C-H activation reactions. This sequence has been modeled in several ways, including the synthesis of 2 from reactions of 3 with CH2=CMe2 and 3 with the 2-methylallyl complex, (C5Me5)2Sm[CH2C(Me)CH2], 4.  相似文献   

4.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

5.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

6.
Reactions of [(eta5-C5H5)Ru(PR'3)2(Cl)] with NaBAr(F) [BAr(F)-=B{3,5-[C6H3(CF3)2]}4-; PR'3=PEt3 or 1/2Et2PCH2CH2PEt2) (depe)] and PR2H (R=Ph, a; tBu, b; Cy, c) in C6H5F, or of related cationic Ru(N2) complexes with PR2H in C6H5F, gave the secondary phosphine complexes [(eta5-C5H5)Ru(PR'3)2(PR2H)]+ BAr(F)- (PR'3=PEt3, 3 a-c; 1/2depe, 4 a,b) in 65-91 % yields. Additions of tBuOK (3 a, 4 a; [D6]acetone) or NaN(SiMe3)2 (3 b,c, 4 b; [D8]THF) gave the title complexes [(eta5-C5H5)Ru(PEt3)2(PR2)] (5 a-c) and [(eta5-C5H5)Ru(depe)(PR2)] (6 a,b) in high spectroscopic yields. These complexes were rapidly oxidized in air; with 5 a, [(eta5-C5H5)Ru(PEt3)2{P(=O)Ph2}] was isolated (>99 %). The reaction of 5 a and elemental selenium yielded [(eta5-C5H5)Ru(PEt3)2{P(=Se)Ph2}] (70 %); selenides from 5 c and 6 a were characterized in situ. Competitive deprotonation reactions showed that 5 a is more basic than the rhenium analog [(eta5-C5H5)Re(NO)(PPh3)(PPh2)], and that 6 b is more basic than PtBu3 and P(iPrNCH2CH2)3N. The latter is one of the most basic trivalent phosphorus compounds [pK(a)(acetonitrile) 33.6]. Complexes 5 a-c and 6 b are effective ligands for Pd(OAc)2-catalyzed Suzuki coupling reactions: 6 b gave a catalyst nearly as active as the benchmark organophosphine PtBu3; 5 a, with a less bulky and electron-rich PR2 moiety, gave a less active catalyst. The reaction of 5 a and [(eta3-C3H5)Pd(NCPh)2]+ BF4- gave the bridging phosphido complex [(eta5-C5H5)Ru(PEt3)2(PPh2)Pd(NCPh)(eta3-C3H5)]+ BAr(F)- in approximately 90 % purity. The crystal structure of 4 a is described, as well as substitution reactions of 3 b and 4 b.  相似文献   

7.
Evans WJ  Rego DB  Ziller JW 《Inorganic chemistry》2006,45(26):10790-10798
The recently discovered LnZ3/M and LnZ2Z'/M methods of reduction (Ln = lanthanide; M = alkali metal; Z, Z' = monoanionic ligands that allow these combinations to generate "LnZ2" reactivity) have been applied to provide the first crystallographically characterized dinitrogen complexes of cerium, [C5Me5)2(THF)Ce]2(mu-eta2.eta2-N2) and [(C5Me4H)2(THF)Ce]2(mu-eta2.eta2-N2), so that the utility of 15N NMR spectroscopy with paramagnetic lanthanides could be determined. [(C5Me5)2(THF)Pr]2(mu-eta2.eta2-N2) and [(C5Me4H)2(THF)Pr]2(mu-eta2.eta2-N2) were also synthesized, crystallographically characterized, and studied by 15N NMR methods. The data were compared to those of [(C5Me5)2Sm]2(mu-eta2.eta2-N2). [(C5Me5)2(THF)Ce]2(mu-eta2.eta2-N2) and [(C5Me5)2(THF)Pr]2(mu-eta2.eta2-N2) are unlike their (C5Me4H)1- analogs in that the solvating THF molecules are cis rather than trans. Structural information on precursors, (C5Me4H)3Ce, (C5Me4H)3Pr, and the oxidation product [(C5Me5)2Ce]2(mu-O) is also presented.  相似文献   

8.
The U(III) mixed-sandwich compound [U(eta-C5Me4H)(eta-C8H6{SiiPr3-1,4}2)(THF)] 1 may be prepared by sequential reaction of UI3 with K[C5Me4H] in THF followed by K2[C8H6{SiiPr3-1,4}2]. 1 reacts with carbon monoxide at -30 degrees C and 1 bar pressure in toluene solution to afford the crystallographically characterized dimer [(U(eta-C8H6{SiiPr3-1,4}2)(eta-C5Me4H)]2(mu-eta2: eta2-C4O4) 2, which contains a bridging squarate unit derived from reductive cyclotetramerization of CO. DFT computational studies indicate that addition of a 4th molecule of CO to the model deltate complex [U(eta-COT)(eta-Cp)]2(mu-eta1: eta2-C3O3)] to form the squarate complex [U(eta-COT)(eta-Cp)]2(mu-eta2: eta2-C4O4)] is exothermic by 136 kJ mol-1.  相似文献   

9.
The sterically crowded (C(5)Me(5))(3)U complex reacts with KC(8) or K/(18-crown-6) in benzene to form [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)), 1, and KC(5)Me(5). These reactions suggested that (C(5)Me(5))(3)U could be susceptible to (C(5)Me(5))(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C(5)Me(5))(3)U was treated with KN(SiMe(3))(2) to form (C(5)Me(5))(2)U[N(SiMe(3))(2)] and KC(5)Me(5). 1 has long U-C(C(5)Me(5)) bond distances comparable to (C(5)Me(5))(3)U, and it too is susceptible to (C(5)Me(5))(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe(3))(2) to make its amide-substituted analogue [[(Me(3)Si)(2)N](C(5)Me(5))U](2)(mu-eta(6):eta(6)-C(6)H(6)), 2. Complexes 1 and 2 have nonplanar C(6)H(6)-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form [(C(5)Me(5))(C(8)H(8))U](2)(mu-eta(3):eta(3)-C(8)H(8)), (C(5)Me(5))(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C(5)Me(5))(1-) ligands, and two electrons from a bridging (C(6)H(6))(2-) moiety.  相似文献   

10.
Pi C  Liu R  Zheng P  Chen Z  Zhou X 《Inorganic chemistry》2007,46(13):5252-5259
The dinuclear ytterbium pyridyl diamido complexes [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,6)] (1a) and [Cp(2)Yb(THF)](2)[mu-eta(1):eta(2)-(NH)(2)(C(5)H(3)N-2,3)] (1b) are easily prepared by protonolysis of Cp(3)Yb with 0.5 equiv of the corresponding diaminopyridine in accepted yields, respectively. Treatment of 1a with 2 equiv of dicyclohexylcarbodiimide (CyN=C=NCy) in THF at low temperature leads to the isolation of the formal double N-H addition product (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyN(CyNH)CN)(2)(C(5)H(3)N-2,6)] (2) in 42% yield. Compound 2 is unstable to heat and slowly isomerized to the mixed neutral/dianionic diguanidinate complex (Cp(2)Yb)(2)[mu-eta(2):eta(2)-(CyNH)(2)CN(C(5)H(3)N-2,6)NC(NCy)(2)](THF) (3) at room temperature. Similarly, treatment of 1b with 2 equiv of CyN=C=NCy gives the addition/ isomerization product (Cp(2)Yb)(2)[mu-eta(2):eta(2):eta(1)-(CyNH)(2)CN(C(5)H(3)N-2,3)NC(NCy)(2)] (4). Moreover, the reaction of various ytterbium aryl diamido complexes (prepared in situ from [Cp(2)YbMe](2) and aryldiamine, respectively) with CyN=C=NCy affords the corresponding addition products (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,4)] (5), (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(6)H(4)-1,3)](6), and (Cp(2)Yb)(2)[mu-eta(2):eta(2)-{CyN(CyNH)CN}(2)(C(13)H(8)-2,7)] (7), respectively. In contrast to pyridyl-bridged bis(guanidinate monoanion) complexes, aryl-bridged bis(guanidinate monoanion) complexes 5-7 are stable even with prolonged heating at 110 degrees C. All the results not only demonstrate that the presence of the pyridyl bridge can impart the diamido complexes with a unique reactivity and initiate the unexpected reaction sequence but also indicate evidently that the number and distribution of negative charges of the diguanidinate ligand is tunable from double monoanionic units to mixed neutral/dianionic isomers. All the complexes are characterized by elemental analysis and IR spectroscopies. The structures of complexes 1a, 3, 5, 6, and 7 are also determined through X-ray single-crystal diffraction analysis.  相似文献   

11.
Dinitrogen can be reduced to the planar M2(mu-eta2:eta2-N2) structure without employing cyclopentadienyl or complicated polydentate ligands using the recently discovered divalent oxidation states of Tm(II), Dy(II), and Nd(II). Complexes of these ions with common monodentate amide and aryloxide ligands can effect N2 reduction. THF solutions of LnI2 (Ln = Tm, Dy) in the presence of 2 equiv of NaN(SiMe3)2 reduce dinitrogen to form {[(Me3Si)2N]2(THF)Ln}2(mu-eta2:eta2-N2) complexes that have planar Ln2N2 units and 1.264(7) and 1.305(6) A NN bonds consistent with (N2)2- moieties. With the stronger reductant Nd(II), aryloxides are sufficient ancillary ligands: the NdI2/2KOC6H3tBu2-2,6 (KOAr) system forms [(ArO)2(THF)2Nd]2(mu-eta2:eta2-N2), which has a 1.242(7) A NN bond.  相似文献   

12.
The reductive reactivity of lanthanide hydride ligands in the [(C5Me5)2LnH]x complexes (Ln = Sm, La, Y) was examined to see if these hydride ligands would react like the actinide hydrides in [(C5Me5)2AnH2]2 (An = U, Th) and [(C5Me5)2UH]2. Each lanthanide hydride complex reduces PhSSPh to make [(C5Me5)2Ln(mu-SPh)]2 in approximately 90% yield. [(C5Me5)2SmH]2 reduces phenazine and anthracene to make [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C12H8N2) and [(C5Me5)2Sm]2(mu-eta(3):eta(3)-C10H14), respectively, but the analogous [(C5Me5)2LaH]x and [(C5Me5)2YH]2 reactions are more complicated. All three lanthanide hydrides reduce C8H8 to make (C5Me5)Ln(C8H8) and (C5Me5)3Ln, a reaction that constitutes another synthetic route to (C5Me5)3Ln complexes. In the reaction of [(C5Me5)2YH]2 with C8H8, two unusual byproducts are obtained. In benzene, a (C5Me5)Y[(eta(5)-C5Me4CH2-C5Me4CH2-eta(3))] complex forms in which two (C5Me5)(1-) rings are linked to make a new type of ansa-allyl-cyclopentadienyl dianion that binds as a pentahapto-trihapto chelate. In cyclohexane, a (C5Me5)2Y(mu-eta(8):eta(1)-C8H7)Y(C5Me5) complex forms in which a (C8H8)(2-) ring is metalated to form a bridging (C8H7)(3-) trianion.  相似文献   

13.
Cyclopalladated tetranuclear Pd(II) complexes, [Pd2(micro-Cl)2(Y)]2 (Y = L1 or L2; H2L1 = di(2-pyridyl)-2,2'-bithiophene; H2L2 = 5,5'-di(2-pyridyl)-2,2':5',2'-terthiophene), containing two pyridyl-alpha, alpha'-disubstituted derivatives of thiophene were prepared. Treating these products with PR3 and subsequently with NaN3 produced the dinuclear Pd-azido complexes [(PR3)2(N3)Pd-Y-Pd(N3)(PR3)2] (Y = L1 or L2) or a cyclometallated complex [(PR3)(N3)Pd-Y'-Pd(N3)(PR3)] (Y' = C,N-L2). Reactions of these Pd-azido complexes with CN-Ar (Ar = 2,6-Me(2)C(6)H(3), 2,6-i-Pr(2)C(6)H(3)) or R-NCS (R = i-Pr, Et, allyl) led to the complexes containing end-on carbodiimido groups [(PMe3)2(N[double bond]C[double bond]N-Ar)Pd-Y-Pd(N[double bond]C[double bond]N-Ar)(PMe3)2] or S-coordinated tetrazole-thiolato groups {(PMe3)2[CN4(R)]S-Pd-Y-Pd-S[CN4)(R)](PMe3)2}. Interestingly, when treated with elemental sulfur, the carbodiimido complexes transformed into the cyclometallated derivatives, [(PMe3)(N[double bond]C[double bond]N-Ar)Pd-Y'-Pd(N[double bond]C[double bond]N-Ar)(PMe3)] (Y' = C,N-L1, C,N-L2). We also report the preparation of linear, thienylene-bridged dinuclear Pd complexes [L2(N3)Pd-X(or X')-Pd(N3)L2] (L = PMe3 or PMe2Ph; H2X = 2,2'-bithiophene or H2X' = 2,2':5',2'-terthiophene) and their reactivity toward organic isocyanide and isothiocyanates.  相似文献   

14.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

15.
Heating a mixture of Ir(4)(CO)(9)(PPh(3))(3) (1) and 2 equiv of C(60) in refluxing chlorobenzene (CB) affords a "butterfly" tetrairidium-C(60) complex Ir(4)(CO)(6){mu(3)-kappa(3)-PPh(2)(o-C(6)H(4))P(o-C(6)H(4))PPh(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (3, 36%). Brief thermolysis of 1 in refluxing chlorobenzene (CB) gives a "butterfly" complex Ir(4)(CO)(8){mu-k(2)-PPh(2)(o-C(6)H(4))PPh}{mu(3)-PPh(2)(eta(1):eta(2)-o-C(6)H(4))} (2, 64%) that is both ortho-phosphorylated and ortho-metalated. Interestingly, reaction of 2 with 2 equiv of C(60) in refluxing CB produces 3 (41%) by C(60)-assisted ortho-phosphorylation, indicating that 2 is the reaction intermediate for the final product 3. On the other hand, reaction of Ir(4)(CO)(8)(PMe(3))(4) (4) with excess (4 equiv) C(60) in refluxing 1,2-dichlorobenzene, followed by treatment with CNCH(2)Ph at 70 degrees C, affords a square-planar complex with two C(60) ligands and a face-capping methylidyne ligand, Ir(4)(CO)(3)(mu(4)-CH)(PMe(3))(2)(mu-PMe(2))(CNCH(2)Ph)(mu-eta(2):eta(2)-C(60))(mu(4)-eta(1):eta(1):eta(2):eta(2)-C(60)) (5, 13%) as the major product. Compounds 2, 3, and 5 have been characterized by spectroscopic and microanalytical methods, as well as by single-crystal X-ray diffraction studies. Cyclic voltammetry has been used to examine the electrochemical properties of 2, 3, 5, and a related known "butterfly" complex Ir(4)(CO)(6)(mu-CO){mu(3)-k(2)-PPh(2)(o-C(6)H(4))P(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (6). These cyclic voltammetry data suggest that a C(60)-mediated electron transfer to the iridium cluster center takes place for the species 3(3)(-) and 6(2)(-) in compounds 3 and 6. The cyclic voltammogram of 5 exhibits six well-separated reversible, one-electron redox waves due to the strong electronic communication between two C(60) cages through a tetrairidium metal cluster spacer. The electrochemical properties of 3, 5, and 6 have been rationalized by molecular orbital calculations using density functional theory and by charge distribution studies employing the Mulliken and Hirshfeld population analyses.  相似文献   

16.
The vinyl C-H bond of tetramethylfulvene is activated in the presence of [(C5Me5)2LuH]x, 1, to form a vinyl organolutetium complex, (C5Me5)2Lu(CH=C5Me4), 2. Also formed in the reaction is the "tuck-over" complex, (C5Me5)2Lu(mu-H)(mu-eta1:eta5-CH2C5Me4)Lu(C5Me5), 3, containing a (CH2C5Me4)2- moiety long postulated to exist in organolutetium chemistry but never crystallographically characterized. Evidence for these C-H bond activations by a "(C5Me5)3Lu" intermediate, 4, is presented. Complex 3 can also be made in high yield by thermolysis of 1. Under H2, 1 catalytically hydrogenates TMF to C5Me5H.  相似文献   

17.
C-F bond activation of ortho-fluorinated benzalimines 2,6-F(2)C(6)R1R2R3-CH=N-R (1-3) using the electron-rich complex Fe(PMe(3))(4) is reported. With the assistance of the imine group as the anchoring group, bis-chelated iron(II) complexes (C(6)FR1R2R3-CH=N-R)(2)Fe(PMe(3))(2) (4-6) were formed. The reaction of 2,6-difluorobenzylidenenaphthalen-1-amine 2,6-F(2)C(6)H(3)-CH=N-C(10)H(7) (9) with Fe(PMe(3))(4) affords [CNC]-pincer iron(II) complex (C(6)H(3)F-CH=N-C(10)H(6))Fe(PMe(3))(3) (10) through both C-F and C-H bond activation and π-(C=N) coordinate iron(0) complex (C(6)H(3)F-CH=N-C(10)H(7))(2)Fe(PMe(3))(2) (11) with C,C-coupling, while a similar reaction with perfluorobenzylidenenaphthalen-1-amine C(6)F(5)-CH=N-C(10)H(7) (14) gave rise to only [CNC]-pincer iron(II) complex (C(6)F(4)-CH=N-C(10)H(6))Fe(PMe(3))(3) (15). The proposed formation mechanisms of these complexes are discussed. The structures of complexes 5, 6, 10 and 11 were confirmed by X-ray single crystal diffraction.  相似文献   

18.
The reactions of Mo(PMe3)6 towards a variety of five- and six-membered heterocyclic nitrogen compounds (namely, pyrrole, indole, carbazole, pyridine, quinoline, and acridine) have been studied to provide structural models for the coordination of these heterocycles to the molybdenum centers of hydrodenitrogenation catalysts. Pyrrole reacts with Mo(PMe3)6 to yield the eta5-pyrrolyl derivative (eta5-pyr)Mo(PMe3)3H, while indole gives sequentially (eta1-indolyl)Mo(PMe3)4H, (eta5-indolyl)Mo(PMe3)3H, and (eta6-indolyl)Mo(PMe3)3H, with the latter representing the first example of a structurally characterized complex with an eta6-indolyl ligand. Likewise, carbazole reacts with Mo(PMe3)6 to give (eta6-carbazolyl)Mo(PMe3)3H with an eta6-carbazolyl ligand. The reactions of Mo(PMe3)6 with six-membered heterocyclic nitrogen compounds display interesting differences in the nature of the products. Thus, Mo(PMe3)6 reacts with pyridine to give an eta2-pyridyl derivative [eta2-(C5H4N)]Mo(PMe3)4H as a result of alpha-C-H bond cleavage, whereas quinoline and acridine give products of the type (eta6-ArH)Mo(PMe3)3 in which both ligands coordinate in an eta6-manner. For the reaction with quinoline, products with both carbocyclic and heterocyclic coordination modes are observed, namely [eta6-(C6)-quinoline]Mo(PMe3)3 and [eta6-(C5N)-quinoline]Mo(PMe3)3, whereas only carbocyclic coordination is observed for acridine.  相似文献   

19.
The compound [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)6}-closo-2,1-RuCB10H8] 1a reacts with PMe3 or PCy3(Cy = cyclo-C6H11) to give the structurally different species [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)5(PMe3)}-closo-2,1-RuCB10H8] 4 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)5(PCy3)}-closo-2,1-RuCB10H8]5, respectively. A symmetrically disubstituted product [1-SMe2-2,2-(CO)2-7,11-(mu-H)2-2,7,11-{Ru2(CO)4(PMe3)2}-closo-2,1-RuCB10H8] 6 is obtained using an excess of PMe3. In contrast, the chelating diphosphines 1,1'-(PPh2)2-Fe(eta-C5H4)2 and 1,2-(PPh2)2-closo-1,2-C2B10H10 react with 1a to yield oxidative-insertion species [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(micro-[1',1'-(PPh2)2-Fe(eta-C5H4)2])(CO)4}-closo-2,1-RuCB10H8] 7 and [1-SMe2-2,2-(CO)2-11-(mu-H)-2,7,11-{Ru2(mu-H)(CO)4(1',2'-(PPh2)2-closo-1',2'-C2B10H10)}-closo-2,1-RuCB10H8] 8, respectively. In toluene at reflux temperatures, 1a with Bu(t)SSBu(t) gives [1-SMe2-2,2-(CO)2-7-(mu-SBu(t))-11-(mu-H)-2,7,11-{Ru2(mu-H)(mu-SBu(t))(CO)4}-closo-2,1-RuCB10H8] 9, and with Bu(t)C [triple bond] CH gives [1-SMe2-2,2-(CO)2-7-{mu:eta2-(E)-CH=C(H)Bu(t)}-11-{mu:eta2-(E)-CH=C(H)Bu(t)}-2,7,11-{Ru2(CO)5}-closo-2,1-RuCB10H8] 10. In the latter, two alkyne groups have inserted into cage B-H groups, with one of the resulting B-vinyl moieties involved in a C-H...Ru agostic bond. Oxidation of 1a with I2 or HgCl2 affords the mononuclear ruthenium complex [1-SMe2-2,2,2-(CO)3-closo-2,1-RuCB10H10] 11.  相似文献   

20.
Mo(PMe(3))(6) cleaves a C-S bond of benzothiophene to give (kappa(2)-CHCHC(6)H(4)S)Mo(PMe(3))(4), which rapidly isomerizes to the olefin-thiophenolate and 1-metallacyclopropene-thiophenolate complexes, (kappa(1),eta(2)-CH(2)CHC(6)H(4)S)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)) and (kappa(1),eta(2)-CH(2)CC(6)H(4)S)Mo(PMe(3))(4). The latter two molecules result from a series of hydrogen transfers and are differentiated according to whether the termini of the organic fragments coordinate as olefin or eta(2)-vinyl ligands, respectively. The reactions between Mo(PMe(3))(6) and selenophenes proceed differently from those of the corresponding thiophenes. For example, whereas Mo(PMe(3))(6) reacts with thiophene to give eta(5)-thiophene and butadiene-thiolate complexes, (eta(5)-C(4)H(4)S)Mo(PMe(3))(3) and (eta(5)-C(4)H(5)S)Mo(PMe(3))(2)(eta(2)-CH(2)PMe(2)), selenophene affords the metallacyclopentadiene complex [(kappa(2)-C(4)H(4))Mo(PMe(3))(3)(Se)](2)[Mo(PMe(3))(4)] in which the selenium has been completely abstracted from the selenophene moiety. Likewise, in addition to (kappa(1),eta(2)-CH(2)CC(6)H(4)Se)Mo(PMe(3))(4) and (kappa(1),eta(2)-CH(2)CHC(6)H(4)Se)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)), which are counterparts of the species observed in the benzothiophene reaction, the reaction of Mo(PMe(3))(6) with benzoselenophene yields products resulting from C-C coupling, namely [kappa(2),eta(4)-Se(C(6)H(4))(CH)(4)(C(6)H(4))Se]Mo(PMe(3))(2) and [mu-Se(C(6)H(4))(CH)C(CH)(2)(C(6)H(4))](mu-Se)[Mo(PMe(3))(2)][Mo(PMe(3))(2)H].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号