首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the dynamic behavior of two collinear cracks in the anisotropic elasticity material plane subjected to the harmonic anti-plane shear waves is investigated by use of the nonlocal theory. To overcome the mathematical difficulties, a one-dimensional nonlocal kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress field near the crack tips. By use of the Fourier transform, the problem can be solved with the help of a pair of triple integral equations, in which the unknown variable is the displacement on the crack surfaces. To solve the triple integral equations, the displacement on the crack surfaces is expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present near crack tips. The nonlocal elasticity solutions yield a finite hoop stress at the crack tips, thus allowing us to using the maximum stress as a fracture criterion. The magnitude of the finite stress field not only depends on the crack length but also on the frequency of the incident waves and the lattice parameter of the materials.  相似文献   

2.
In this paper the equation of motion is solved when the shear modulus and density are functions of r and z and the latter part of this paper contains an analysis of the interaction of torsional waves normally with penny-shaped crack located in a thick infinite elastic fibre. The infinite elastic fibre is bonded to an infinite elastic matrix. The matrix and the thick elastic fibre are non-homogeneous and are of dissimilar materials. The solution of the problem is reduced to a Fredholm integral equation of the second kind, which is solved numerically. The numerical solution is used to calculate the stress intensity factor at the rim of the penny-shaped crack. Finally the results of the stress intensity factors are displayed graphically.  相似文献   

3.
The response of an unbounded anisotropic elastic body containing a semi-infinite crack subjected to a concentrated impact force on one of the crack faces is studied. An exact solution of the dynamic stress intensity factors is obtained from a linear superposition of the solution of Lamb’s problem and a solution of a dislocation emitting from the crack tip. The stress intensity factors exhibit square-root singularity upon the arrival of the Rayleigh wave at the crack tip. As the Rayleigh wave passes through the crack tip, the stress intensity factors either instantaneously assume the static values or gradually approach to zero. Several numerical examples are given for isotropic, cubic and orthotropic materials.  相似文献   

4.
A numerical and experimental investigation for determining mixed-mode stress intensity factors, fracture toughness, and crack turning angle for BX-265 foam insulation material, used by NASA to insulate the external tank (ET) for the space shuttle, is presented. BX-265 foam is a type of spray-on foam insulation (SOFI), similar to the material used to insulate attics in residential construction. This cellular material is a good insulator and is very lightweight. Breakup of segments of this foam insulation on the shuttle ET impacting the shuttle thermal protection tiles during liftoff is believed to have caused the space shuttle Columbia failure during re-entry. NASA engineers are interested in understanding the processes that govern the breakup/fracture of this material from the shuttle ET. The foam is anisotropic in nature and the required stress and fracture mechanics analysis must include the effects of the direction dependence on material properties. Material testing at NASA Marshall Space Flight Center (MSFC) has indicated that the foam can be modeled as a transversely isotropic material. As a first step toward understanding the fracture mechanics of this material, we present a general theoretical and numerical framework for computing stress intensity factors (SIFs), under mixed-mode loading conditions, taking into account the material anisotropy. We present SIFs for middle tension – M(T) – test specimens, using 3D finite element stress analysis (ANSYS) and FRANC3D fracture analysis software. SIF values are presented for a range of foam material orientations. Mode I fracture toughness of the material is determined based on the SIF value at failure load. We also present crack turning angles for anisotropic foam material under mixed-mode loading. The results represent a quantitative basis for evaluating the strength and fracture properties of anisotropic foam insulation material.  相似文献   

5.
We investigate the surface instability of an anisotropic elastic half-plane subjected to surface van der Waals forces due to the influence of another rigid contactor by means of the Stroh formalism. It is observed that the surface of a generally anisotropic elastic half-plane subjected to van der Waals forces from another rigid flat is always unstable. The wave number of the surface wrinkling is only reliant on the positive M22 component of the 3 × 3 surface admittance tensor M, the van der Waals interaction coefficient β and the surface energy γ of the elastic half-plane. The decay rate of surface perturbation along the direction normal to the surface of the anisotropic half-plane is different from the wave number, a phenomenon different from that observed for an isotropic half-plane.  相似文献   

6.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

7.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

8.
Problems of stress wave propagation and diffraction in elastic inhomogeneous media are undoubtedly of interest to scientists from the viewpoint of investigation of fundamental laws of dynamic processes and of the use of the results in technical and technological applications. The paper deals with the dynamic contact problem of shear plane wave diffraction at the edge of a semi-infinite crack in a compound space consisting of two elastic half-spaces. The questions related to the onset of surface waves and the wave field behavior in far-field regions are also considered.  相似文献   

9.
IntroductionInthetheoryofplanedeformationsoflinearelastotatics,Saint-Venant'sprincipleplaysanimportantroleinbothoftheoryandpracticalapplicahonsandisoftenusedtojushfyapproximationthatneglectedgeeffects.ForhomogenousisotropicmaterialthevalidityofSaintVenant'sprincipleiswellestablished.However,forhomogenousanisotropicmaterial,experimentalresultshaveshownthatedgeeffectsmaypersistmuchfartherintotheinteriorofthebodythanforisotropicmaterialandasaresultcannotbeneglected.Asweknow,theelasticityproblem…  相似文献   

10.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

11.
A proper analytic continuation of Sommerfeld's solution is shown to provide the solution to the problem of diffraction of an evanescent plane wave. This is done by a correct extension of a parameter (detour parameter) from real to complex values. Some peculiarities of this solution are discussed. A few representative three-dimensional graphs show the field magnitude in the vicinity of the edge.  相似文献   

12.
A Finite Element (FE) model is proposed to study the interaction between in-plane elastic waves and a crack of different orientations. The crack is modeled by an interface of unilateral contact with Coulombs friction. These contact laws are modified to take into account a pre-stress σ0σ0 that closes the crack. Using the FE model, it is possible to obtain the contact stresses during wave propagation. These contact stresses provide a better understanding of the coupling between the normal and tangential behavior under oblique incidence, and explain the generation of higher harmonics. This new approach is used to analyze the evolution of the higher harmonics obtained as a function of the angle of incidence, and also as a function of the excitation level. The pre-stress condition is a governing parameter that directly changes the nonlinear phenomenon at work at the interface and therefore the harmonic generation. The diffracted fields obtained by the nonlinear and linear models are also compared.  相似文献   

13.
T.C.T. Ting 《Wave Motion》2011,48(4):335-344
In a recent paper Destrade [1] studied surface waves in an exponentially graded orthotropic elastic material. He showed that the quartic equation for the Stroh eigenvalue p is, after properly modified, a quadratic equation in p2 with real coefficients. He also showed that the displacement and the stress decay at different rates with the depth x2 of the half-space. Vinh and Seriani [2] considered the same problem and added the influence of gravity on surface waves. In this paper we generalize the problem to exponentially graded general anisotropic elastic materials. We prove that the coefficients of the sextic equation for p remain real and that the different decay rates for the displacement and the stress hold also for general anisotropic materials. A surface wave exists in the graded material under the influence of gravity if a surface wave can propagate in the homogeneous material without the influence of gravity in which the material parameters are taken at the surface of the graded half-space. As the wave number k → ∞, the surface wave speed approaches the surface wave speed for the homogeneous material. A new matrix differential equation for surface waves in an arbitrarily graded anisotropic elastic material under the influence of gravity is presented. Finally we discuss the existence of one-component surface waves in the exponentially graded anisotropic elastic material with or without the influence of gravity.  相似文献   

14.
15.
This paper presents a finite difference time-domain technique for 2D problems of elastic wave scattering by cracks with interacting faces. The proposed technique introduces cracks into the finite difference model using a set of split computational nodes. The split-node pair is bound together when the crack is closed while the nodes move freely when open, thereby a unilateral contact condition is considered. The development of the open/close status is determined by solving the equation of motion so as to yield a non-negative crack opening displacement. To check validity of the proposed scheme, 1D and 2D scattering problems for which exact solutions are known are solved numerically. The 1D problem demonstrates accuracy and stability of the scheme in the presence of the crack-face interaction. The 2D problem, in which the crack-face interaction is not considered, shows that the proposed scheme can properly reproduce the stress singularity at the tip of the crack. Finally, scattered fields from cracks with interacting faces are investigated assuming a stick and a frictionless contact conditions. In particular, the directivity and higher-harmonics are investigated in conjunction with the pre-stress since those are the basic information required for a successful ultrasonic testing of closed cracks.  相似文献   

16.
On the basis of the two-dimensional theory of anisotropic thermoelasticity, a solution is given for the thermal stress intensity factors due to the obstruction of a uniform heat flux by an insulated line crack in a generally anisotropic half plane. The crack is replaced by continuous distributions of sources of temperature discontinuity and dislocations. First, the particular thermoelastic dislocation solutions for the half plane are obtained; then the corresponding isothermal solutions are superposed to satisfy the traction-free conditions on the crack surfaces. The dislocation solutions are applied to calculate the thermal stress intensity factors, which are validated by the exact solutions. The effects of the uniform heat flux, the ply angle and the crack length are investigated.  相似文献   

17.
A finite and infinite element model is derived to predict wave patterns around a semi-infinite breakwater in water of constant depth. Both circular and square meshes of elements are used. The wave theory used is that of Berkhoff. The appropriate boundary conditions for finite and infinite boundaries are described. The singularity in the velocity at the breakwater tip is modelled effectively using the technique of Henshell and Shaw originally developed in elasticity. The results agree well with the analytical solution. In addition the problem of waves incident upon a semi-infinite breakwater and parabolic shoal, where both diffraction and refraction are present, is solved. There is no analytical solution for this case. The combination of finite and infinite elements is found to be an effective and accurate technique for such problems.  相似文献   

18.
19.
The 2D model of edge dislocations generation from blunt crack tip in viscoelastic material under residual stress has been proposed, the solution of stress field and displacement field are solved by using complex potential method, conformal mapping and Laplace inverse transformation. The explicit expressions of stress intensity factor, strain energy density and crack tip slide displacement are obtained in closed form. The principle of compatibility of blunt crack to edge dislocations has been used to evaluate the dislocations number and dimensionless ratio α. Numerical results present that the number of edge dislocations first increases and then decreases with increase of zone size ratio of the dislocations zone and none-dislocations zone, but it can be reduced by higher configurations ratio of semi-minor axis and semi-major axis. In addition, it increases with time and tends to be a constant quickly. The normalized multiplier α first increases and then decreases with increase of zone size ratio. In addition, it decreases with time and the increase of crack configurations ratio. Both normalized micro-volume SED and normalized dislocation-volume SED decrease with increase of distance from crack tip and tend to vanish. But the dislocation-volume SED decreases more quickly than micro-volume SED does, because of its stronger singularity. Moreover, they increase with time and decrease of configurations ratio.  相似文献   

20.
Elastic metamaterials have been investigated to achieve negative effective properties, which cannot be found in the conventional elastic medium. In this paper, plane wave propagation and reflection in semi-infinite elastic metamaterials with doubly or triply negative material properties are studied analytically and numerically. The unique negative refractions for the longitudinal (P) wave and transverse (S) wave are captured by the proposed generalized Snell’s law. Attention is paid to quantitative characterization of the effects of different negative property combinations on the anomalous wave propagation. The effects of different angles of incidence are also investigated for both double-negative and triple-negative transmitted media and some unusual wave propagation phenomena such as complete wave mode conversion are numerically demonstrated. This study can serve as the theoretical foundation for engineering and designing general metamaterial-based elastic wave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号