首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem considered is that of the torsion of a non-homogeneouselastic cylinder, which is embedded in a non-homogeneous elastichalf-space (matrix) of different rigidity modulus. A rigid discis bonded to the flat surface of the cylinder and torque isapplied to the cylinder through a rigid disc. It is assumedthat there is perfect bonding at the common cylindrical surface.Using integral transformation techniques the solution of theproblem is reduced to dual integral equations. Later on thesolution of the dual integral equations is transformed intothe solution of a Fredholm integral equation of the second kind.Solving the Fredholm integral equation numerically the numericalresults for torque and shear stress inside the cylinder areobtained and displayed graphically to demonstrate the effectof non-homogeneity of the elastic material on the torque andshear stress.  相似文献   

2.
We investigate the anti-plane shear problem of a curvilinear crack lying along the interface of an arbitrarily shaped elastic inhomogeneity embedded in an infinite matrix subjected to uniform stresses at infinity. Complex variable and conformal mapping techniques are used to derive an analytical solution in series form. The problem is first reduced to a non-homogeneous Riemann–Hilbert problem, the solution of which can be obtained by evaluating the associated Cauchy integral. A set of linear algebraic equations is obtained from the compatibility condition imposed on the resulting analytic function defined in the inhomogeneity and its Faber series expansion. Each of the unknown coefficients in the corresponding analytic functions can then be uniquely determined by solving the linear algebraic equations, which are written concisely in matrix form. The resulting analytical solution is then used to quantify the displacement jump across the debonded section of the interface as well as the traction distribution along the bonded section of the interface. In addition, our solution allows us to obtain mode-III stress intensity factors at the two crack tips. The solution to the anti-plane problem of a partially debonded elliptical inhomogeneity containing a confocal crack is also derived using a similar method.  相似文献   

3.
This paper investigates the problem of an axisymmetric penny shaped crack embedded in an infinite functionally graded magneto electro elastic medium. The loading consists of magnetoelectromechanical loads applied on the crack surfaces assumed to be magneto electrically impermeable. The material’s gradient is parallel to the axisymmetric direction and is perpendicular to the crack plane. An anisotropic constitutive law is adopted to model the material behavior. The governing equations are converted analytically using Hankel transform into coupled singular integral equations, which are solved numerically to yield the crack tip stress, electric displacement and magnetic induction intensity factors. A similar problem but with a different crack morphology, that is a plane crack embedded in an infinite functionally graded magneto electro elastic medium, was considered by the authors in a previous work (Rekik et al., 2012) [25]. While the overall solution schemes look similar, the axisymmetric problem resulted in more mathematical complexities and let to different conclusions with respect to the influence of coupling between elastic, electric and magnetic effects. The main focus of this paper is to study the effect of material non-homogeneity on the fields’ intensity factors to understand further the behavior of graded magnetoelectroelastic materials containing penny shaped cracks and to inspect the effect of varying the crack geometry.  相似文献   

4.
The axisymmetric interaction problem of an elastic spherical inclusion with a penny-shaped crack in an elastic space under torsion is considered. The superposition and reflection methods [3]-[4] are used to solve the mixed boundary value problem in question. With the help of the dual integral equations technique and appropriate re-expansion of the eigenfunction, the problem is reduced to an infinite system of linear algebraic equations of the second kind. The matrix elements of that system decrease exponentially along the rows and the columns. Its unique solution is proved to exist in a proper class of sequences and is shown to be represented by a convergent, in the vicinity of the origin, power series in a geometric parameter, equal to the ratio of the radius of the inclusion to its distance from the crack. This procedure provides an efficient formula for the stress intensity factor.  相似文献   

5.
非对称载荷作用的外部圆形裂纹问题   总被引:2,自引:2,他引:0  
使用边界积分方程方法,研究了三维无限弹性体中受非对称载荷作用的外部圆形裂纹问题。通过使用Fourier级数和超几何函数,将问题的二维边界奇异积分方程简化为Abel型方程,获得了一般非对称载荷作用的外部圆形裂纹问题的应力强度因子精确解,比用Hankel变换法得到的结果更为一般。结果表明:边界积分方程法在解析分析方面还有很大的潜力。  相似文献   

6.
The stress field due to the presence of a Volterra dislocation in an isotropic elastic sheet is obtained. The stress components exhibit the familiar Cauchy type singularity at dislocation location. The solution is utilized to construct integral equations for elastic sheets weakened by multiple embedded or edge cracks. The cracks are perpendicular to the sheet boundary and applied traction is such that crack closing may not occur. The integral equations are solved numerically and stress intensity factors (SIFs) are determined on a crack edges.  相似文献   

7.
This paper contains an analysis of the stress distribution in an elastic medium having cylindrical cavity with a circumferential edge crack when it is deformed by the application of uniform shearing stress. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is calculated. Also the crack opening displacements are displayed in graphical forms.  相似文献   

8.
The paper deals with the interaction between three Griffith cracks propagating under antiplane shear stress at the interface of two dissimilar infinite elastic half-spaces. The Fourier transform technique is used to reduce the elastodynamic problem to the solution of a set of integral equations which has been solved by using the finite Hilbert transform technique and Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips are obtained. Numerical values of the interaction effect have been computed for and results show that interaction effects are either shielding or amplification depending on the location of each crack with respect to other and crack tip spacing.  相似文献   

9.
The method of images is utilized to derive the solution of a screw dislocation under time-harmonic conditions for an elastic strip from the solution of infinite planes. The displacement and stress components are obtained for a strip under concentrated antiplane, time-harmonic traction. The dislocation solution is employed to formulate integral equation for a strip weakened by cracks and cavities. The effects of load frequency and crack orientation on the stress intensity factors are studied.  相似文献   

10.
This paper contains an analysis of the stress distribution in an elastic medium having cylindrical cavity with a circumferential edge crack when it is deformed by the application of uniform shearing stress. By making a suitable representation of the stress function for the problem, the problem is reduced to the solution of a pair of singular integral equations. This pair of singular integral equations is solved numerically, and the stress intensity factor due to the effect of the crack size is calculated. Also the crack opening displacements are displayed in graphical forms.Received: January 24, 2002; revised: October 17, 2002  相似文献   

11.
An extended displacement discontinuity (EDD) boundary integral equation method is proposed for analysis of arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack surface. Green's functions for unit point EDDs in an infinite three-dimensional medium of 2D hexagonal QC are derived using the Hankel transform method. Based on the Green's functions and the superposition theorem, the EDD boundary integral equations for an arbitrarily shaped planar crack in an infinite 2D hexagonal QC body are established. Using the EDD boundary integral equation method, the asymptotic behavior along the crack front is studied and the classical singular index of 1/2 is obtained at the crack edge. The extended stress intensity factors are expressed in terms of the EDDs across crack surfaces. Finally, the energy release rate is obtained using the definitions of the stress intensity factors.  相似文献   

12.
利用Schmidt方法分析了位于正交各向异性材料中的张开型界面裂纹问题.经富立叶变换使问题的求解转换为求解两对对偶积分方程,其中对偶积分方程的变量为裂纹面张开位移.最终获得了应力强度因子的数值解.与以前有关界面裂纹问题的解相比,没遇到数学上难以处理的应力振荡奇异性,裂纹尖端应力场的奇异性与均匀材料中裂纹尖端应力场的奇异性相同.同时当上下半平面材料相同时,可以得到其精确解.  相似文献   

13.
压电压磁复合材料中界面裂纹对弹性波的散射   总被引:5,自引:1,他引:4  
利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题.经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程A·D2在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式.数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响A·D2从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同.  相似文献   

14.
矩形弹性夹杂与裂纹相互干扰的边界元分析   总被引:1,自引:0,他引:1  
使用边界元法研究了无限弹性体中矩形弹性夹杂对曲折裂纹的影响,导出了新的复边界积分方程.通过引入与界面位移密度和面力有关的未知复函数H(t),并使用分部积分技巧,使得夹杂和基体界面处的面力连续性条件自动满足,而边界积分方程减少为2个,且只具有1/r阶奇异性.为了检验该边界元法的正确性和有效性,对典型问题进行了数值计算.所得结果表明:裂纹的应力强度因子随着夹杂弹性模量的增大而减小,软夹杂有利于裂纹的扩展,而刚性较大的夹杂对裂纹有抑制作用.  相似文献   

15.
本文利用单裂纹基本解及无限板条的Fourier变换解,将含有中心裂纹的夹紧矩形板的拉伸问题,化归为解一组奇异积分方程,进而使用Gauss-Jacobi求积公式,计算了中心裂纹的应力强度因子及夹紧边的法向应力,在应力强度因子表中还作了数值结果比较.  相似文献   

16.
The impact response of a laminate composite with a crack or flaw normal to the interface is studied in terms of the intensification of the dynamic stresses around the crack border. Analytically, the laminate is modeled by a single layer with the crack sandwiched between two other layers of dissimilar material. Fourier and Laplace transforms are employed such that the problem reduces to the solution of a system of dual integral equations. Numerical results for the dynamic stress intensity factor are obtained by solving a Fredholm integral equation. The dynamic stress intensity factors are shown to fluctuate as a function of time, reaching a maximum that depends on the elastic properties of the composite and the flaw size.Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pennysylvania 18015. Published in Mekhanika Polimerov, No. 5, pp. 835–840, September–October, 1978.  相似文献   

17.
采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现.  相似文献   

18.
压电陶瓷板中非电渗透型反平面裂纹的电弹性场   总被引:4,自引:0,他引:4  
对受4种机电载荷的内含裂纹的压电陶瓷板的电弹性行为进行了分析。利用积分变换方法将非电渗透型反平面裂纹问题化为对偶积分方程组,求解这些方程组可以获得裂纹线上电弹性场的明显解析表达式,及裂尖处一些量的强度因子和机械应变能释放率。当板的厚度趋近于无穷大时,所得结果还原为熟知结果。  相似文献   

19.
椭圆孔边裂纹对SH波的散射及其动应力强度因子   总被引:2,自引:0,他引:2  
采用复变函数和Green函数方法求解具有任意有限长度的椭圆孔边上的径向裂纹对SH波的散射和裂纹尖端处的动应力强度因子.取含有半椭圆缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时的位移解作为Green函数,采用裂纹“切割”方法,并根据连续条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.讨论了孔洞的存在对动应力强度因子的影响.  相似文献   

20.
A constant crack moving along the interface of magnetoelectroelastic and functionally graded elastic layers under anti-plane shear and in-plane electric and magnetic loading is investigated by the integral transform method. Fourier transforms are applied to reduce the mixed boundary value problem of the crack to dual integral equations, which are expressed in terms of Fredholm integral equations of the second kind. The singular stress, electric displacement and magnetic induction near the crack tip are obtained asymptotically and the corresponding field intensity factors are defined. Numerical results show that the stress intensity factors are influenced by the crack moving velocity, the material properties, the functionally graded parameter and the geometric size ratios. The propagation of the moving crack may bring about crack kinking, depending on the crack moving velocity and the material properties across the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号