首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] A range of peptoids can be prepared efficiently using microwave-assisted solid-phase chemistry in a commercial reactor. This method is most effective for the installation of electronically deactivated benzylic amines. The systematic incorporation of these amines into peptoids can deliver oligomers capable of displaying unique and stable structural motifs-microwave-assisted solid-phase synthesis will enable their future study and application.  相似文献   

2.
Helical peptoid oligomers were synthesized in which the positions of nitroxide radical spin probes along the backbone were systematically varied, allowing evaluation of intra-molecular distances and dynamics by electron spin resonance spectroscopy.  相似文献   

3.
Here we describe a simple method that allows for rapid and easy sequence determination of cyclic peptoids. The key idea in this strategy is a post-screening "ring-opening" reaction to convert cyclic peptoids selected from a high-throughput screen into linear peptoids, which can be sequenced by tandem mass spectrometry. Thus, there is no need for encoding.  相似文献   

4.
Peptoids are oligomers of N-substituted glycine that can be readily assembled using haloacetic acids and primary amines as synthons. Here, we report the synthesis and characterization of three new heterocyclic amines, 2-(2,2′:6′,2″-terpyridine-4′-yloxy)ethylamine, 2-(1,10-phenanthroline-5-yloxy)ethylamine and 8-hydroxy-2-quinolinemethylamine, and their incorporation into a series of different peptoid oligomer sequences. Since the heterocycles are all known to coordinate metal ions, the peptidomimetic products are designed to bind metal species with the potential for applications in catalysis and materials science.  相似文献   

5.
The effect of nonlocal interactions on the local structural propensities of folded dendrimers was evaluated in this work by comparing, under identical conditions, the conformational properties of isomeric dendrimers differing in their global packing efficiency. Accordingly, a modular synthesis of two series of dendrimers up to the third generation was developed to provide efficient access to isomeric dendrimers displaying different levels of overall compaction. Dendrimer compaction levels were adjusted by connecting the folded dendrons to 1,3,5-benzenetricarbonyl chloride, as the central core, via either a 2- or a 4-aminobenzamide linkage to induce relatively "compacted" or "expanded" conformations, respectively. The hydrodynamic volumes of the dendrimers were measured by time-resolved fluorescence anisotropy (TRFA) measurements as a function of the dendrimer series, generation level, and solvent. Packing efficiencies (compaction levels) were estimated by the ratio (V(h)/V(vw)) of the experimental hydrodynamic volume (V(h)) to the calculated van der Waals volume (V(vw)). The extent and stability of local helical bias was measured using circular dichroism and correlated with the packing efficiency (V(h)/V(vw)). These studies suggested that compaction plays an extremely important role in determining the secondary structural preferences of the dendrimers; however, the nature of compaction was more important than the extent of compaction.  相似文献   

6.
According to the characterization of RNA secondary structures, the RNA secondary structures are transformed into elementary sequences, namely characteristic sequences of RNA secondary structures, by representing A, U, G, C in A-U/ G-C pairs, as A′, U′, G′, C′. Based on the representation, three recurrences for mapping RNA secondary structures into 1-D graph, 2-D graph and 3-D graph are given, respectively. Furthermore, a frequency-based method for RNA secondary structures is given in terms of 1-D graph.  相似文献   

7.
In recent years, there has been increasing interest in de novo design and construction of novel synthetic peptides that mimic protein secondary structures, i.e., turns, helices and sheets. The unique structural influences exerted by unsubstituted, non-coded, non-chiral beta-amino acid, i.e., beta-alanine (beta-Ala; 3- or beta- aminopropionic acid) on peptide backbone, when inserted into peptide chain comprised alpha-amino acids, offer an excellent opportunity to design and construct diverse well-defined three-dimensional structures. Our current understanding of folding-unfolding behavior of the beta-Ala residues relies primarily from an examination of conformational preferences of a large number of short cyclic- as well as acyclic beta-Ala containing peptides investigated using single crystal X-ray diffraction analysis. In addition, theoretical conformational energy calculations and different spectroscopic techniques: 1H NMR, FT-IR and CD, have also been employed although, to a lesser extent. The obtainable results tend to reveal overwhelming preferences of the beta-Ala moiety for the folded gauche (mu approximately +/-65+/-10 degrees conformation in cyclic- and for an extended trans (mu approximately +/-165+/-10 degrees) as well as gauche (mu approximately +/-65+/-10 degrees) orientations in acyclic beta-Ala containing peptides. The results also indicate that in short linear beta-Ala containing peptides, the specific influence of selective neighboring side-chain substituents e.g. linear- or cyclic symmetrically C(alpha,alpha)-disubstituted glycines and other conformational constraints, may be significant in controlling the overall folded-unfolded topographical features across the two methylene units (-CbetaH2-CalphaH2-) of the beta-Ala residue. Taking into consideration the wide occurrence of beta-Ala moiety in animal and plant kingdoms and the remarkable structural versatility of the peptides incorporating beta-Ala residue(s), together with appreciable resistance towards enzymatic degradation, hold strong promise for biophysicists and biochemists not only to design molecules that fold to mimic protein secondary structures but also to develop potent peptide analogs and peptidomimetics displaying unique pharmaceutical properties.  相似文献   

8.
Various experimental methods have been developed to unequivocally identify vicinal neighbor carbon atoms. Variants of the HMBC experiment intended for this purpose have included 2J3J-HMBC and H2BC. The 1,1-ADEQUATE experiment, in contrast, was developed to accomplish the same goal but relies on the (1) J(CC) coupling between a proton-carbon resonant pair and the adjacent neighbor carbon. Hence, 1,1-ADEQUATE can identify non-protonated adjacent neighbor carbons, whereas the 2J3J-HMBC and H2BC experiments require both neighbor carbons to be protonated to operate. Since 1,1-ADEQUATE data are normally interpreted with close reference to an HSQC spectrum of the molecule in question, we were interested in exploring the unsymmetrical indirect covariance processing of multiplicity-edited GHSQC and 1,1-ADEQUATE spectra to afford an HSQC-ADEQUATE correlation spectrum that facilitates the extraction of carbon-carbon connectivity information. The HSQC-ADEQUATE spectrum of strychnine is shown and the means by which the carbon skeleton can be conveniently traced is discussed.  相似文献   

9.
10.
Weng  Mouyi  Wang  Zhi  Qian  Guoyu  Ye  Yaokun  Chen  Zhefeng  Chen  Xin  Zheng  Shisheng  Pan  Feng 《中国科学:化学(英文版)》2019,62(8):982-986
Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory(GTscheme) to improve the efficiency and accuracy of material identification, which focuses on processing the "topological relationship" rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures.Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.  相似文献   

11.
12.
Analytical characterization of dimethacrylate-tyrosine-lysine-tyrosine (DMTLT, a new biodegradable acrylic cross-linker synthesized at our laboratory) is carried out using CE-MS. DMTLT is a pseudopeptide composed by tyrosine-lysine-tyrosine amino acids linked through urea bonds with two methacrylic groups, one at each end of the molecule, making this compound an excellent cross-linker for polymerization reactions and for obtaining new biodegradable materials. A new CE-MS method is developed for the characterization of DMTLT and its products of degradation after basic hydrolysis. In order to carry out an exhaustive examination of such degradation products methods based on CE coupled to IT and TOF-MS are employed. Based on CE-IT-MS results and the elemental composition of the degradation products obtained by CE-TOF-MS, conclusions on the mechanism and kinetic of hydrolysis of DMTLT are obtained confirming both the usefulness of CE-MS to characterize new biomaterials and the applicability of DMTLT for preparing new biodegradable polymers. These results are corroborated through the CE-MS detection of the identified products of degradation in a dimethyl acrylamide polymer cross-linked with DMTLT.  相似文献   

13.
14.
Wiegmann S  Mattay J 《Organic letters》2011,13(12):3226-3228
A new reactive postion at the upper rim of inherently chiral resorcin[4]arenes was introduced through cleavage of an up to now unreactive methoxy group through the demethylating reagent 9-I-9-BBN. Conservation of the inherent chirality was warranted through the use of a protecting group at the free phenol group.  相似文献   

15.
The N-Boc O-tert-butyldimethysilyl-substituted hexa-beta-peptide methyl ester 18 was constructed from the O-TBS ether of (-)-(2R, 3S)-phenylisoserine. By NMR, it was determined that this homo beta-peptide adopts a highly stable beta-strand-type secondary structure in chloroform solution, which is stabilized by both hydrophobic interactions involving the OTBS methyl groups of residues i and i + 2, and inter-(five-membered)/intra (six-membered)-residue H-bonding interactions. These interactions are systematically repeated along the peptide chain and, thereby, operate in concert to stabilize the observed conformation of 18.  相似文献   

16.
The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.  相似文献   

17.
18.
An improved scheme to help in the prediction of protein structure is presented. This procedure generates improved starting conformations of a protein suitable for energy minimization. Trivariate gaussian distribution functions for the π, ψ, and χ1 dihedral angles have been derived, using conformational data from high resolution protein structures selected from the Protein Data Bank (PDB). These trivariate probability functions generate initial values for the π, ψ, and χ1 dihedral angles which reflect the experimental values found in the PDB. These starting structures speed the search of the conformational space by focusing the search mainly in the regions of native proteins. The efficiency of the new trivariate probability distributions is demonstrated by comparing the results for the α-class polypeptide fragment, the mutant Antennapedia (C39 → S) homeodomain (2HOA), with those from two reference probability functions. The first reference probability function is a uniform or flat probability function and the second is a bivariate probability function for π and ψ. The trivariate gaussian probability functions are shown to search the conformational space more efficiently than the other two probability functions. The trivariate gaussian probability functions are also tested on the binding domain of Streptococcal protein G (2GB1), an α/β class protein. Since presently available energy functions are not accurate enough to identify the most native-like energy-minimized structures, three selection criteria were used to identify a native-like structure with a 1.90-Å rmsd from the NMR structure as the best structure for the Antennapedia fragment. Each individual selection criterion (ECEPP/3 energy, ECEPP/3 energy-plus-free energy of hydration, or a knowledge-based mean field method) was unable to identify a native-like structure, but simultaneous application of more than one selection criterion resulted in a successful identification of a native-like structure for the Antennapedia fragment. In addition to these tests, structure predictions are made for the Antennapedia polypeptide, using a Pattern Recognition-based Importance-Sampling Minimization (PRISM) procedure to predict the backbone conformational state of the mutant Antennapedia homeodomain. The ten most probable backbone conformational state predictions were used with the trivariate and bivariate gaussian dihedral angle probability distributions to generate starting structures (i.e., dihedral angles) suitable for energy minimization. The final energy-minimized structures show that neither the trivariate nor the bivariate gaussian probability distributions are able to overcome the inaccuracies in the backbone conformational state predictions to produce a native-like structure. Until highly accurate predictions of the backbone conformational states become available, application of these dihedral angle probability distributions must be limited to problems, such as homology modeling, in which only a limited portion of the backbone (e.g., surface loops) must be explored. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Matrix-assisted laser desorption/ionization (MALDI) coupled with ion mobility–mass spectrometry (IM–MS) provides a rapid (μs–ms) means for the two-dimensional (2D) separation of complex biological samples (e.g., peptides, oligonucleotides, glycoconjugates, lipids, etc.), elucidation of solvent-free secondary structural elements (e.g., helices, β-hairpins, random coils, etc.), rapid identification of post-translational modifications (e.g., phosphorylation, glycosylation, etc.) or ligation of small molecules, and simultaneous and comprehensive sequencing information of biopolymers. In IM–MS, protein-identification information is complemented by structural characterization data, which is difficult to obtain using conventional proteomic techniques. New avenues for enhancing the figures of merit (e.g., sensitivity, limits of detection, dynamic range, and analyte selectivity) and optimizing IM–MS experimental parameters are described in the context of deriving new information at the forefront of proteomics research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号