首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Since the initial reports showing the ability of electrospray ionization mass spectrometry (ESI-MS) to study intact noncovalent biomolecular complexes, an increasing number of uses for this technique in studying biochemical systems is emerging. We have investigated the ability of ESI-MS to characterize the metal-binding properties of calcium (Ca2+) binding proteins by studying the incorporation of Ca2+ and cadmium (Cd2+) into wild-type and mutant calbindin D9K. ESI-MS showed that wild-type calbindin D9K binds two Ca2+ ions with similar affinities while the binding of two Cd2+ ions is sequential, as is the binding of the two Ca2+ or Cd2+ ions to the N56A mutant of calbindin. The binding of Ca2+ to the wild-type protein was clearly seen to be cooperative. These results demonstrate the potential efficacy of ESI-MS to discriminate between cooperative and independent site metal binding to metalloproteins.  相似文献   

2.
Molecular dynamics simulations of Ca+2 ions near protein were performed with three force fields: GROMOS96, OPLS-AA, and CHARMM22. The simulations reveal major, force-field dependent, inconsistencies in the interaction between the Ca+2 ions with the protein. The variations are attributed to the nonbonded parameterizations of the Ca+2-carboxylates interactions. The simulations results were compared to experimental data, using the Ca+2-HCOO- equilibrium as a model. The OPLS-AA force field grossly overestimates the binding affinity of the Ca+2 ions to the carboxylate whereas the GROMOS96 and CHARMM22 force fields underestimate the stability of the complex. Optimization of the Lennard-Jones parameters for the Ca+2-carboxylate interactions were carried out, yielding new parameters which reproduce experimental data.  相似文献   

3.
The extent of conformational change that calcium binding induces in EF-hand proteins is a key biochemical property specifying Ca(2+) sensor versus signal modulator function. To understand how differences in amino acid sequence lead to differences in the response to Ca(2+) binding, comparative analyses of sequence and structures, combined with model building, were used to develop hypotheses about which amino acid residues control Ca(2+)-induced conformational changes. These results were used to generate a first design of calbindomodulin (CBM-1), a calbindin D(9k) re-engineered with 15 mutations to respond to Ca(2+) binding with a conformational change similar to that of calmodulin. The gene for CBM-1 was synthesized, and the protein was expressed and purified. Remarkably, this protein did not exhibit any non-native-like molten globule properties despite the large number of mutations and the nonconservative nature of some of them. Ca(2+)-induced changes in CD intensity and in the binding of the hydrophobic probe, ANS, implied that CBM-1 does undergo Ca(2+) sensorlike conformational changes. The X-ray crystal structure of Ca(2+)-CBM-1 determined at 1.44 A resolution reveals the anticipated increase in hydrophobic surface area relative to the wild-type protein. A nascent calmodulin-like hydrophobic docking surface was also found, though it is occluded by the inter-EF-hand loop. The results from this first calbindomodulin design are discussed in terms of progress toward understanding the relationships between amino acid sequence, protein structure, and protein function for EF-hand CaBPs, as well as the additional mutations for the next CBM design.  相似文献   

4.
Ca2+ binding is essential for the biological functions of calmodulin (CaM) as a trigger/sensor protein to regulate many biological processes in the Ca2+ -signaling cascade. A challenge in understanding the mechanism of Ca2+ signaling is to obtain site-specific information about the Ca2+ binding properties of individual Ca2+ -binding sites of EF-hand proteins, especially for CaM. In this paper, we report the first estimation of the intrinsic Ca2+ affinities of the four EF-hand loops of calmoduin (I-IV) by individually grafting into the domain 1 of CD2. Taking advantage of the Trp residues in the host protein, we first determined metal-binding affinities for Tb3+, Ca2+, and La3+ for all four grafted EF-loops using Tb3+ aromatic resonance energy transfer. EF-loop I exhibits the strongest binding affinity for Ca2+, La3+, and Tb3+, while EF-loop IV has the weakest metal-binding affinity. EF-loops I-IV of CaM have dissociation constants for Ca2+ of 34, 245, 185, and 814 microM, respectively, with the order I > III approximately equal to II > IV. These findings support a charge-ligand-balanced model in which both the number of negatively charged ligand residues and the balanced electrostatic dentate-dentate repulsion by the adjacent charged residues are two major determinants for the relative Ca2+ -binding affinities of EF-loops in CaM. Our grafting method provides a new strategy to obtain site-specific Ca2+ binding properties and a better estimation of the cooperativity and conformational change contributions of coupled EF-hand proteins.  相似文献   

5.
The ionization states of the acidic residues around the Ca2+-binding sites of sarcoplasmic reticulum Ca2+ ATPase are studied by continuum electrostatic calculations and all-atom molecular dynamics simulations with explicit solvent and phospholipids. The two methods consistently indicate that Glu58 and Glu908 are protonated at neutral pH. The Ca2+ coordination and the H-bonds formed by the protonation of Glu58 and Glu908 are stable in an MD simulation, whereas the H-bonds are disrupted and the Ca2+ coordination geometry is severely altered in another simulation treating these residues unprotonated. The results clearly indicate that the H-bonds formed by protonation of Glu58 and Glu908 provide extra stability for the Ca2+-binding sites of Ca2+ ATPase.  相似文献   

6.
Vipoxin is a neurotoxin from the venom of Vipera ammodytes meridionalis, the most toxic snake in Europe. It is a unique complex of a toxic phospholipase A2 (PLA2) and a non-toxic PLA2-like protein inhibitor (Inh) which probably evolved from the enzyme and reduces its activity and toxicity. The enzymatic activity of Vipoxin is Ca2+-dependent and the interaction of this metal ion with the neurotoxic complex and its separated components was investigated using the fluorescent probe ANS. Vipoxin binds two calcium ions, one per each subunit. The X-ray model of the Ca2+-free neurotoxin shows that the potential metal-binding sites require minor structural changes to bind calcium. The dissociation constants K(2+)Ca of the calcium complexes of Vipoxin and its components, PLA2 and Inh, were determined to be 16, 10 and 9 mM, respectively. The affinity for calcium of Vipoxin is reduced in comparison to those of PLA2 and Inh. The X-ray model shows that the potential Ca2+-binding sites in the two components are partially 'shielded' in the complex. The affinity of the neurotoxin to Sr2+ and Ba2+ is lower and the respective K(2+)Ca are 20 and 30 mM. The saturation of Ca2+-binding sites increased the melting point Tm of Vipoxin by 11 degrees C and the activation energy for the thermal deactivation of the excited tryptophans Ea by 11 kJ mol(-1) x Ca2+ is important not only for the enzymatic activity of Vipoxin but also for its thermostability.  相似文献   

7.
Calcium ion binding by the four EF-hand motifs of the protein calmodulin (CaM) is a central event in Ca2+-based cellular signaling. To understand molecular details of this complex process, isolated Ca2+-binding loops can be studied, by use of both experiments and calculations. In this work, we explore the metal specificity of the four Ca2+-binding loops of CaM using density functional theory (DFT) quantum chemical calculations and molecular dynamics simulations. We study CaM complexes with the physiologically important ions of calcium (Ca2+) and magnesium (Mg2+) and also with two other ions, strontium (Sr2+) and lanthanum (La3+). The former is of interest in the area of radioactive waste bioremediation, whereas the latter is often used as a probe of Ca2+-binding sites. We obtain intrinsic metal ion-loop binding energies as well as their components: vacuum, charge-transfer, solvation, entropy, and deformation terms. A detailed analysis of the results reveals that the total binding energy depends on a delicate balance among these energy components. They, in turn, are determined by the cation's charge and size as well as the amino acid composition and flexibility of the loops and the identity of the metal-chelating residues.  相似文献   

8.
We have used on-line sample clean-up, concentration, and chromatography with electrospray ionization mass spectrometry (ESI-MS), to characterize and determine the presence of disulfide bonds in recombinant full-length rat brain calbindin D28K and two deletion mutants of the protein, one lacking EF-hand 2 (calbindin delta 2) and the other lacking EF-hands 2 and 6 (calbindin delta 2,6). The molecular weights of the expressed proteins dissolved in biological buffers were determined with high accuracy using a low-flow, pressurized chamber infusion system, that allows on-line protein clean-up by removing buffers/salts incompatible with ESI-MS. The molecular weight determinations showed that the amino-terminal methionine residues had been cleaved during the expression and isolation of the recombinant proteins. Approximately 85-90% of the protein sequences were confirmed by on-line HPLC-ESI-MS analysis of peptides generated by a lysyl endoproteinase C digestion. Comparisons of ESI-MS spectra of native and reduced calbindin D28K and delta 2 show that the full length- and delta 2 mutant-protein contain one disulfide bond. Molecular mass determinations of calbindin delta 2,6 showed that this protein contains a highly active cysteine residue that covalently binds a mercaptoethanol group, or forms a homodimer via a disulfide bond. The results show surprising differences amongst the deletion mutants of calbindin D28K with respect to the formation of disulfide bonds. These differences are not readily detected by other techniques and show that ESI-MS is a powerful, rapid method by which to detect disulfide linkages for intact proteins.  相似文献   

9.
Ca2+, "a signal of life and death", controls numerous cellular processes through interactions with proteins. An effective approach to understanding the role of Ca2+ is the design of a Ca2+-binding protein with predicted structural and functional properties. To design de novo Ca2+-binding sites in proteins is challenging due to the high coordination numbers and the incorporation of charged ligand residues, in addition to Ca2+-induced conformational change. Here, we demonstrate the successful design of a Ca2+-binding site in the non-Ca2+-binding cell adhesion protein CD2. This designed protein, Ca.CD2, exhibits selectivity for Ca2+ versus other di- and monovalent cations. In addition, La3+ (Kd 5.0 microM) and Tb3+ (Kd 6.6 microM) bind to the designed protein somewhat more tightly than does Ca2+ (Kd 1.4 mM). More interestingly, Ca.CD2 retains the native ability to associate with the natural target molecule. The solution structure reveals that Ca.CD2 binds Ca2+ at the intended site with the designed arrangement, which validates our general strategy for designing de novo Ca2+-binding proteins. The structural information also provides a close view of structural determinants that are necessary for a functional protein to accommodate the metal-binding site. This first success in designing Ca2+-binding proteins with desired structural and functional properties opens a new avenue in unveiling key determinants to Ca2+ binding, the mechanism of Ca2+ signaling, and Ca2+-dependent cell adhesion, while avoiding the complexities of the global conformational changes and cooperativity in natural Ca2+-binding proteins. It also represents a major achievement toward designing functional proteins controlled by Ca2+ binding.  相似文献   

10.
Red blood cells contain a protein that activates membrane-bound (Ca2+ + Mg2+)-ATPase and Ca2+ transport. The red blood cell activator protein is similar to a modulator protein that stimulates cyclic AMP phosphodiesterase. Wang and Desai [Journal of Biological Chemistry 252:4175--4184, 1977] described a modulator-binding protein that antagonizes the activation of cyclic AMP phosphodiesterase by modulator protein. In the present work, modulator-binding protein was shown to antagonize the activation of (Ca2+ + Mg2+)-ATPase and Ca2+ transport by red blood cell activator protein. The results further demonstrate the similarity between the activator protein from human red blood cells and the modulator protein from bovine brain.  相似文献   

11.
A plasmonic switch based on the calcium-induced conformational changes of calmodulin is shown to exhibit reversible wavelength modulations in response to changing calcium concentration. The extinction maximum (lambdamax) of a localized surface plasmon resonance (LSPR) sensor functionalized with a novel calmodulin construct, cutinase-calmodulin-cutinase (CutCaMCut), reversibly shifts by 2-3 nm. A high-resolution (HR) LSPR spectrometer with a wavelength resolution (3sigma) of 1.5 x 10-2 nm was developed to detect these wavelength modulations in real-time, providing information about the dynamics and structure of the protein. The rate of conversion from open (Ca2+-bound) to closed (Ca2+-free) calmodulin is shown to be 4-fold faster than the reverse process, with a closing rate of 0.127 s-1 and opening rate of 0.034 s-1. As far as we are aware, this plasmonic switch marks the first use of LSPR spectroscopy to detect reversible conformational changes in an unlabeled protein.  相似文献   

12.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolysates. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2-200 microM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed "high" and "low" affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strength, or membranes prepared by the EDTA (1-10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

13.
Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.  相似文献   

14.
A new pulse sequence is proposed to measure cross correlation rates between 1H Curie spin relaxation and 1H-15N or 1H-13C dipole-dipole coupling (%@mt;sys@%Gamma%@sx@%H,HX%@be@%CS,DD%@sxx@%%@mx@% ) in paramagnetic systems. The new sequence has been conceived to obtain quantitative measurements of cross correlation rates in the close proximity to the paramagnetic center, preventing the loss of information due to fast transverse relaxation. The approach was tested on the dicalcium protein calbindin D9k in which Ca2+ has been substituted at site II with Ce3+. At variance with previously reported experiments, all peaks observed in HSQC experiments tailored to paramagnetic signals give quantitative estimates of %@mt;sys@%Gamma%@sx@%H%@ital@%,%@rsf@%HX%@be@%CS%@ital@%,%@rsf@%DD%@sxx@%%@mx@% . This is crucial to refine the immediate proximity of the metal ion.  相似文献   

15.
We describe nanotube-vesicle networks with reconstituted membrane protein from cells and with interior activity defined by an injection of microparticles or molecular probes. The functionality of a membrane protein after reconstitution was verified by single-channel ion conductance measurements in excised inside-out patches from the vesicle membranes. The distribution of protein, determined by fluorescence detection, in the network membrane was homogeneous and could diffuse via a nanotube connecting two vesicles. We also show how injecting small unilamellar protein-containing vesicles can differentiate the contents of individual containers in a network. The combination of membrane activity and interior activity was demonstrated by ionophore-assisted accumulation, and internal Calcium Green-mediated detection, of Ca2+ within a single network container. This system can model a variety of biological functions and complex biological multicompartment structures and might serve as a platform for constructing complex sensor and computational devices.  相似文献   

16.
Altered intracellular Ca2+ dynamics are characteristically observed in cardiomyocytes from failing hearts. Studies of Ca2+ handling in myocytes predominantly use Fluo-3 AM, a visible light excitable Ca2+ chelating fluorescent dye in conjunction with rapid line-scanning confocal microscopy. However, Fluo-3 AM does not allow for traditional ratiometric determination of intracellular Ca2+ concentration and has required the use of mathematic correction factors with values obtained from separate procedures to convert Fluo-3 AM fluorescence to appropriate Ca2+ concentrations. This study describes methodology to directly measure intracellular Ca2+ levels using inactivated, Fluo-3-AM-loaded cardiomyocytes equilibrated with Ca2+ concentration standards. Titration of Ca2+ concentration exhibits a linear relationship to increasing Fluo-3 AM fluorescence intensity. Images obtained from individual myocyte confocal scans were recorded, average pixel intensity values were calculated, and a plot is generated relating the average pixel intensity to known Ca2+ concentrations. These standard plots can be used to convert transient Ca2+ fluorescence obtained with experimental cells to Ca2+ concentrations by linear regression analysis. Standards are determined on the same microscope used for acquisition of unknown Ca2+ concentrations, simplifying data interpretation and assuring accuracy of conversion values. This procedure eliminates additional equipment, ratiometric imaging, and mathematic correction factors and should be useful to investigators requiring a straightforward method for measuring Ca2+ concentrations in live cells using Ca2+-chelating dyes exhibiting variable fluorescence intensity.  相似文献   

17.
Side-chain carboxyl and carbonyl groups play a major role in protein interactions and enzyme catalysis. A series of (13)C relaxation experiments is introduced to study the dynamics of carboxyl and carbonyl groups in protein side chains on both fast (sub-ns) and slower (micros-ms) time scales. This approach is illustrated on the protein calbindin D(9k). Fast dynamics features correlate with hydrogen- and ion-binding patterns. We also identify chemical dynamics on micros time scales in solvent-exposed carboxyl groups, most probably due to exchange between the carboxylate and carboxylic acid forms.  相似文献   

18.
RalA GTPase, a member of Ras superfamily proteins, shows alternative forms between the active GTP-binding and the inactive GDP-binding states. Ral-specific guanine nucleotide exchange factor such as RalGDS interacts with activated Ras and cooperates with Ras indicating that Ral can be activated through Ras signaling pathway. Another activation path for Ral are through Ca2+-dependent but Ras-independent manner. In this study, studies were carried out to examine possible effects of Ca2+ and calmodulin, Ca2+-binding protein, directly on the GTP/GDP-binding state to recombinant unprenylated GST-RalA proteins. The results showed that Ca2+ stimulated the binding of GTP to RalA, whereas it reduced the binding of GDP to RalA. However, it does not involve a high affinity association of Ca2+ with RalA. Ca2+/calmodulin stimulated the GTPase activity of RalA. These results indicate that Ca2+ alone activates RalA by stimulating GTP-binding to RalA and Ca2+/calmodulin inactivates RalA by increasing the activity of RalGTPase.  相似文献   

19.
The internal energy distributions of product CaBr in the collision reactions Ca+C2H5Br and Ca+nC3H7Br are studied by using the quasiclassical trajectory method. The average vibrational, rotational and translational energies and total available energies of the product CaBr molecules are calculated. The results indicate that when the collision energy is equal to 7.54 kJ/mol the energy of product CaBr is mainly the vibrational energy. As the reactant collision energy increases, the average translational and rotational energies of the product CaBr increase, the average vibrational energy decreases slightly, and the most probable vibrational state shifts to lower vibrational energy levels. The internal states of reagents have little influence on the internal energy distribution of the product. The bigger the radical group is, the higher ratio of the vibrational energy to the available energy of the product is. There exist two competitive reaction paths for the collision reactions Ca+C2H5Br and Ca+nC3H7Br, the migratory encounter and direct reaction paths. The former produces high vibrational excited state product CaBr and the latter causes C-Br bond to break. When the collision energy increases, the reactions tend to the latter path.  相似文献   

20.
使用反射式飞行时间质谱仪, 研究了Ca+-叔丁胺络合物在激光诱导下的反应. 得到了反应的光解谱和作为波长函数的光解行为光谱以及各反应通道的分支比. 反应有两个通道, Ca+-与分子的解离通道和生成产物Ca+-NH2的反应通道, Ca+-是主要产物, 而且在整个激光扫描的范围都存在, 并且在530~595 nm波段是唯一的产物. 反应的光解行为光谱显示出明显的无结构的峰, 分别对应于络合物的跃迁. 结合反应通道的分支比以及量化计算, 对这些峰进行了指认, 并初步探讨了反应的动力学机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号