首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim J  Ohki A  Ueki R  Ishizuka T  Shimotashiro T  Maeda S 《Talanta》1999,48(3):705-710
Four calix[4]arene dibenzocrown ether compounds have been prepared and evaluated as Cs(+)-selective ligands in solvent polymeric membrane electrodes. The ionophores include 25,27-bis(1-propyloxy)calix[4]arene dibenzocrown-6 1, 25,27-bis(1-alkyloxy)calix[4]arene dibenzocrown-7s 2 and 3, and 25,27-bis(1-propyloxy)calix[4]arene dibenzocrown-8 4. For an ion-selective electrode (ISE) based on 1, the linear response concentration range is 1x10(-1) to 1x10(-6) M of Cs(+). Potentiometric selectivities of ISEs based on 1-4 for Cs(+) over other alkali metal cations, alkaline earth metal cations, and NH(4)(+) have been assessed. For 1-ISE, a remarkably high Cs(+)/Na(+) selectivity was observed, the selectivity coefficient (K(Cs,Na)(Pot)) being ca. 10(-5). As the size of crown ether ring is enlarged from crown-6 (1) to crown-7 (2 and 3) to crown-8 (4), the Cs(+) selectivity over other alkali metal cations, such as Na(+) and K(+), is reduced successively. Effects of membrane composition and pH in the aqueous solution upon the electrode properties are also discussed.  相似文献   

2.
To prepare calixarene‐based polymers with proton transport ability, the calix[4]arene derivatives with one polymerizable group at the upper rim were first prepared via selective nitration, amination, and acrylamidation of calix[4]arene. Two methods, solution polymerization and emulsion polymerization, were then employed to carry out the copolymerization of these derivatives with other monomers such as styrene, vinyl acetate, or methyl methacrylate. Transport experiments show that the resulting calixarene‐based polymers have a very good ability to transport protons. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6259–6266, 2004  相似文献   

3.
Calix[4]arenes constrained to the 1,3-alternate conformation and functionalized at the upper rim with four and two tert-butylnitroxides have been synthesized and characterized by X-ray crystallography, magnetic resonance (EPR and (1)H NMR) spectroscopy, and magnetic studies. The 1,3-alternate nitroxide tetraradical and diradical provide unique polyradical scaffolds for dissection of the through-bond and through-space intramolecular exchange couplings. In addition, detailed magnetic studies of the previously reported calix[4]arene nitroxide tetraradical, which possesses cone conformation in solution, reveal conformational dependence of exchange coupling. Through-bond coupling between the adjacent nitroxide radicals is mediated by the nitroxide-m-phenylene-CH(2)-m-phenylene-nitroxide coupling pathway, and through-space coupling is found between the diagonal nitroxide radicals at the conformationally constrained N...N distance of 5-6 A. Magnetic studies of the calix[4]arene polyradical scaffolds in frozen solutions show that the through-bond exchange coupling in the 1,3-alternate calix[4]arene tetraradical is antiferromagnetic, while that in cone calix[4]arene tetraradical is ferromagnetic. The through-space exchange couplings are antiferromagnetic in both cone and 1,3-alternate calix[4]arene tetraradical, as well as in the 1,3-alternate calix[4]arene diradical. The exchange coupling constants (|J/k|) are of the order of 1 K.  相似文献   

4.
Kim SJ  Jo MG  Lee JY  Kim BH 《Organic letters》2004,6(12):1963-1966
[structure: see text] We have synthesized a number of calix[4]arene derivatives presenting thiourea functional groups at their upper rims by the condensation of a 1,3-di(p-amino)calix[4]arene with alkyl isothiocyanates. Mono- and dithiourea-substituted calix[4]arenes were prepared selectively in good yields, and homocoupling of the former led to calix[4]arene dimers with a thiourea linker. X-ray crystallography revealed interesting intra- and intermolecular hydrogen bonding patterns. (1)H NMR data and computational studies also provided some insight into the hydrogen bonding patterns.  相似文献   

5.

Hartree-Fock, second order Møller-Plesset perturbation theory, and density functional theory calculations were carried out to analyse the complexation of calix[4]arene with cationic species including H + and the alkali metal cations (Li + , Na + , K + , Rb + , and Cs + ). Special emphasis has been placed on conformational binding selectivity, and on the structural characterization of the complexes. Li + and Na + cations are located in the calix[4]arene lower rim. The larger cations (K + , Rb + , and Cs + ) complex preferentially with the calix[4]arene cone conformer, and their endo (inclusive) complexation is driven by cation- ~ interactions, leading in the case of K + to a structure that reflects a preferential interaction with two phenol rings. The endo complexation of Cs + with calix[4]arene is in agreement with X-ray diffraction data.  相似文献   

6.
The synthesis, complete characterization, and solid state structural and solution conformation determination of calix[n]arenes (n = 4, 6, 8) is reported. A complete series of X-ray structures of the alkali metal salts of calix[4]arene (HC4) illustrate the great influence of the alkali metal ion on the solid state structure of calixanions (e.g., the Li salt of monoanionic HC4 is a monomer; the Na salt of monoanionic HC4 forms a dimer; and the K, Rb, and Cs salts exist in polymeric forms). Solution NMR spectra of alkali metal salts of monoanionic calix[4]arenes indicate that they have the cone conformation in solution. Variable-temperature NMR spectra of salts HC4.M (M = Li, Na, K, Rb, Cs) show that they possess similar coalescence temperatures, all higher than that of HC4. Due to steric hindrance from tert-butyl groups in the para position of p-tert-butylcalix[4]arene (Bu(t)C4), the alkali metal salts of monoanionic Bu(t)C4 exist in monomeric or dimeric form in the solid state. Calix[6]arene (HC6) and p-tert-butylcalix[6]arene (Bu(t)C6) were treated with a 2:1 molar ratio of M(2)CO(3) (M = K, Rb, Cs) or a 1:1 molar ratio of MOC(CH(3))(3) (M = Li, Na) to give calix[6]arene monoanions, but calix[6]arenes react in a 1:1 molar ratio with M(2)CO(3) (M = K, Rb, Cs) to afford calix[6]arene dianions. Calix[8]arene (HC8) and p-tert-butylcalix[8]arene (Bu(t)()C8) have similar reactivity. The alkali metal salts of monoanionic calix[6]arenes are more conformationally flexible than the alkali metal salts of dianionic calix[6]arenes, which has been shown by their solution NMR spectra. X-ray crystal structures of HC6.Li and HC6.Cs indicate that the size of the alkali metal has some influence on the conformation of calixanions; for example, HC6.Li has a cone-like conformation, and HC6.Cs has a 1,2,3-alternate conformation. The calix[6]arene dianions show roughly the same structural architecture, and the salts tend to form polymeric chains. For most calixarene salts cation-pi arene interactions were observed.  相似文献   

7.
Bis(calix[4]diquinones) 1 and 2 and double calix[4]diquinone 3 have been synthesized from their corresponding double calix[4]arenes 4, 5, and 6, respectively. Compounds 4-6 have been prepared from one-pot and stepwise syntheses under high pressure. Complexation studies of ligands 1-3 with alkali metal ions such as Li+, Na+, K+, and Cs+ were carried out by 1H NMR titrations. Receptors 1 can selectively form 1:1 complexes with Na+. Ligand 2 prefers to form 1:1 complexes with K+ and Cs+. Receptor 3 retained the cone conformation of the calix[4]arene unit upon binding K+ but changed the conformation when complexing Li+ and Na+. Electrochemical studies using cyclic voltammetry and square wave voltammetry showed significant changing of voltammograms of 2 and 3 in the presence of alkali metal ions. Receptor 3 showed the electrochemically switched binding property toward Na+ and K+.  相似文献   

8.
The protonolysis reaction of the germanium(II) amide Ge[N(SiMe3)2]2 with calix[4]arene and calix[8]arene furnishes the two germanium(II) calixarene complexes {calix[4]}Ge2 and {calix[8]}Ge4, respectively, which have been crystallographically characterized. The calix[4]arene complex contains a Ge2O2 rhombus at the center of the molecule and is one of the only four germanium(II) calix[4]arenes that have been structurally characterized. The calix[8]arene species is the first reported germanium calix[8]arene complex, and it exhibits an overall bowl-shaped structure which contains two Ge2O2 fragments. The latter complex reacts with Fe2(CO)9 to yield an octairon compound, which has also been structurally characterized and contains four GeFe2 triangles arranged around the macrocyclic ring. The germanium(II) centers are oxidized to germanium(IV) in this process, with concomitant reduction of the neutral diiron species to Fe2(CO)(8)2- anions.  相似文献   

9.
In the present study, two novel calix[4]arene receptors containing triphenylamine units in 1,3-alternate conformation have been synthesized and characterized in detail. First, the 25,27-dipropoxy-26,28-bis[(3-aminopropyl)oxy]-calix[4]arene 4 and 25,26,27,28-tetra[(3-aminopropyl)oxy]-calix[4]arene 7 were prepared by using convenient reagents. Then, these amino derivatives of calix[4]arene were converted to Schiff base derivatives appended to triphenylamine of calix[4]arene (5 and 8) using 4-formyltriphenylamine via condensation. The 1,3-alternate conformation of the synthesized calix[4]arenes was determined by 1H and 13C NMR analyses. Also, their structures have been characterized by using 1H and 13C NMR, infrared, and elemental analyses.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

10.
Macrocycles with up to 100 atoms have been synthesised using two calix[4]arenes as templates: first, (3,5-dialkenyloxy)phenyl groups are attached to the wide rim of a calix[4]arene via urea links, then the alkenyl groups are connected via a metathesis reaction using a tetratosylurea calix[4]arene for their correct prearrangement and finally the urea functions are cleaved to detach the newly formed macrocycles.  相似文献   

11.
Reactions of sodium p-sulfonatocalix[4]arene and scandium(III) tristriflate in the presence, and absence, of [18]crown-6 give the crystalline complexes [Sc2(mu-OH)2(H2O)10][Na4(H2O)8-[calix[4]arene(SO3)4]2).13 H2O and [[Sc2(mu-OH)2(H2O)8][Sc(H2O)4]2[calix[4]-arene(SO3)4-H+]2([18]crown-6).16H2O. Both complexes involve novel coordination polymers with calixarene units linked through sodium or scandium centers and also feature capsule assemblies through to the head-to-head association of calixarenes. A linear array of capsules associated with an infinite chain of aquo-bridged sodium ions, and an aquated hydroxy-bridged scandium(III) dimer, [Sc2(mu-OH)2(H2O)10]4+, are found in the absence of the crown ether. In the presence of [18]crown-6 both hydrated scandium monomers and dimers bridge between calixarenes in a two-dimensional coordination network. The crown ethers reside in cavities created by two calixarenes from adjacent polymeric sheets via a variety of supramolecular interactions(hydrogen-bonding, shape complementarity), and effectively add a third dimension to the network. The extended structure of both of these polymers is highly porous, and resembles a bilayer.  相似文献   

12.
The novel chiral polymeric compounds containing more than one calix[4]arene have been synthesized by reacting a new calix[4]arene diamine derivative with two chiral monomers. These newly prepared compounds were studied by extraction of toxic heavy metal (Cu2+, Co2+, Cd2+, Hg2+), silver and alkali metal (Na+, K+) cations from aqueous phase. It was observed that the resulting calixarene-based polymers have a good complexing ability towards silver, alkali metal and toxic heavy metal cations.  相似文献   

13.
Tetra-urea calix[4]arenes substituted with four mono- or bisalkenyl residues have been converted into bis- or tetraloop compounds by intramolecular olefin metathesis, with use of a tetratosylurea calix[4]arene as template. The same strategy has now been used to synthesise trisloop compounds and bisloop compounds with adjacent loops, completing the series of the loop-containing tetra-urea derivatives. A tetra-urea calix[4]arene of the AABB type, where A stands for a bisalkenyl- and B for a monoalkenyl-substituted urea unit, was used as precursor for the three loops. It was easily synthesised from a tetraamino calix[4]arene in which two adjacent amino groups were Boc-protected. The ABCB-type precursor for the two adjacent loops was prepared through protection of two opposite amino functions with trityl groups. The capabilities of the novel macrocyclic tetra-ureas for the selective formation of hydrogen-bonded dimers were studied.  相似文献   

14.

As a special subset of calix[4]arene, calix[4]resorcinarene is an excellent molecular platform which could be modified by introducing functional groups to multiple sites at the upper and lower rims. There are mainly three ways to build functionalized calix[4]resorcinarene derivatives: (1) modification on the C-2 sites of calix[4]resorcinarenes; (2) modification on the phenolic hydroxyl groups of calix[4]resorcinarenes; (3) modification on the bridging methylenes at lower rim of calix[4]resorcinarenes. Functionalized calix[4]resorcinarene derivatives play an important role in the development of self-assembly chemistry, among which hydrogen bonding and metal coordination are the two most common interactions to obtain multicomponent structures. Moreover, due to the excellent topological structures and various active substituents of functionalized calix[4]resorcinarene derivatives, their applications in various fields, such as nanoparticles, catalysts, fluorescent materials, and sensors, have been briefly presented in this paper.

  相似文献   

15.
Summary Two new kinds of calix[4]arene derivatives, 5, 11, 17, 23-tetra-tert-butyl-25,27-bis(isopropylcarbamoyl-methoxy)-26,28-diundecenyloxy calix[4]arene (C[4]A) and 25,27-dibutoxy-5, 11, 17, 23-tetra-tert-butyl-26,28-diundecenyloxy calix[4]arene (C[4]B0, are prepared and then are polymized by two different processes. Three calix[4]arene polysiloxane stationary phases for capillary gas chromatography are obtained. Their chromatographic characteristics, including column efficiency, polarity, selectivity, glass-transition temperature and thermal stability are studied. Retention mechanisms are also discussed.  相似文献   

16.
Deprotonation of calix[6]arenes with barium in methanol followed by the addition of [Ti(OPr(i))(4)] or [Zr(OBu(n))(4)] is effective in the formation of novel dimeric 2:1 barium-titanium(IV)/zirconium(IV) calix[6]arene complexes. In these complexes a central Ti(IV)/Zr(IV) coordinated in the exo-position connects the two calix[6]arenes in the 1,3-alternate conformation, each with an endo-barium sharing common phenolate groups with the titanium/zirconium centre and participating in cation-pi interactions. A homometallic barium calix[6]arene dimer was also prepared wherein the calix[6]arenes are in the 1,3-alternate conformation with each coordinating one endo- and one exo-barium centre. The exo-barium cations connect the two calix[6]arenes through bridging methanol ligands. In this and the heterometallic complexes, cation-pi complexation of the Ba(2+) ion within the 1,3 alternate conformation of calix[6]arene facilitates the formation of the dimeric complexes in methanol. In contrast, the smaller Sr(2+) ion did not form similar complexes in methanol, and the formation of an analogous 2:1 strontium-titanium calixarene complex required the use of the more sterically demanding donor alcohol, isopropanol, the resulting complex being devoid of cation-pi interaction. The results show (i) that a subtle interplay of solvation strength, coordination array type and cavity/cation size influences the accessibility of heterobimetallic complexes based on calix[6]arenes, and (ii) a synergistic endo-exo binding behaviour.  相似文献   

17.
Kim S  Kim JS  Kim SK  Suh IH  Kang SO  Ko J 《Inorganic chemistry》2005,44(6):1846-1851
The preparation of an 1,3-alternate calix[4]arene tetraphosphane ligand, 25,26,27,28-tetrakis{2-(diphenylphosphino)ethoxy}calix[4]arene (4), is described. Ligand 4 is obtained in four steps in 17% overall yield. Reaction of 4 with AgBF4 produced the encapsulated two silver complex [Ag2{(P,P,P,P)-tetraphencalix[4]arene}](BF4)2. The solid-state structure shows that the encapsulated silver undergoes a substantial pi-interaction by two opposite arene rings. Rhodation of 4 employing [Rh(cot)2]BF4 yielded the encapsulated complex with a bent coordination mode. Two organometallic fragments inclusioned inside a 1,3-alternate calix[4]arene tetraphosphane was also achieved by the reaction of 4 with [PtH(PPh3)2 (thf)]+. Full characterization includes X-ray structural studies of compounds 4-6.  相似文献   

18.
The usage of calix[n]arenes as ancillary poly(phenolate) ligands is a rapidly developing area in coordination chemistry. This article focuses on the synthesis, structure and reactivity of calix[4]arene‐ and calix[4]arene ether‐stabilized imido complexes of group 4 — 6 transition metals as well as on the comparison of calix[4]arene dialkyl ethers in particular with other widely employed related ligand systems such as salenes, porphyrins and tetraazaannulenes. Contrary to these nitrogen containing systems, it is much easier to control the charge of the ligand system through the degree of alkylation of the calixarene's lower rim without a major change in the geometry of the resulting metal complex. This could lead to isoelectronic and structurally closely related transition metal complex fragments for metals in neighboring groups of the periodic table or for metals in different oxidation states. The “intrinsic” reactivity of metal imido linkages might therefore be explored using calix[4]arenes and calix[4]arene ethers and first results are summarized in this research report.  相似文献   

19.
The first comparative theoretical study of three parent calix[4]arene analogues (calix[4]arene, thiacalix[4]arene, and homooxacalix[4]arene) has been performed using molecular dynamic simulations and density functional theory (MPWB1K/6-311G∗∗//B3LYP/6-311G∗∗) methods. The theoretical observations herein including optimized geometry, polarity, and atomic charge data provide that homooxacalix[4]arene would offer more efficient platform for metal ion recognition compared to thiacalix[4]arene or calix[4]arene.  相似文献   

20.
The ligation properties of three new upper-rim-substituted calix[4]arene ligands, 5,17-bis(hydroxymethyl)-tetra-n-butoxycalix[4]arene ((HOCH2)2-nBu4Clx, 7), 5,17-bis((diphenylphosphinito)methoxy)-tetra-n-butoxycalix[4]arene ((PPh2OCH2)2-nBu4Clx, 8), and 5,17-bis((diphenylphosphino)methyl)-tetra-n-butoxycalix[4]arene ((PPh2CH2)2-nBu4Clx, 10) are reported herein. The newly prepared compounds differ from previously reported diametrically substituted calix[4]arene derivatives in that the lower-rim substituent was n-butyl. The presence of this lower-rim substituent did not reduce the inherent crystallinity of these complexes as purification of all materials occurred via simple crystallizations. The key precursor for the syntheses of 8 and 10 was 7, acquisition of which occurred in six steps starting from tetra-tert-butylcalix[4]arene, 1. Calix[4]arene derivatives include, tetra-n-butoxycalix[4]arene (nBu4Clx, 3), 5,11,17,23-tetrabromo-tetra-n-butoxycalix[4]arene (Br4-nBu4Clx, 4), 5,17-dibromo-tetra-n-butoxycalix[4]arene (Br2-nBu4Clx, 5), 5,17-bis(formyl)-tetra-n-butoxycalix[4]arene ((CHO)2-nBu4Clx, 6), and 5,17-bis(chloromethyl)-tetra-n-butoxycalix[4]arene ((ClCH2)2-nBu4Clx, 9), all of which were synthesized using modifications of existing procedures. Characterization of all compounds occurred, when possible, using 1H, 13C, and 31P NMR, elemental analyses, FAB-MS, ESI-MS, FT-IR, and X-ray crystallography. The solid-state structures of all calix[4]arene intermediates and ligands showed that the annulus adopted the pinched-cone conformation in which the average C(5)...C(17) intraannular separation was 4.5 +/- 0.4 A. Reaction of 7 with CpTiMe3 yielded the cis-chelate, CpTi(Me)[(OCH2)2-nBu4Clx] (11), quantitatively. Data obtained using ESI-MS (positive-ion mode) confirmed the monomer formulation showed above, and 1H NMR spectra provided sufficient information to deduce the nature of the Ti coordination sphere. Reaction of 8 with cis-Cl2Pd(NCPh)2 in refluxing benzene afforded cis-Cl2Pd[(PPh2OCH2)2-nBu4Clx] (12) in good yields. The monomeric identity of this compound was verified by both X-ray crystallography and positive-ion ESI-MS. The cis-bidentate calix[4]arene ligand did not undergo any noticeable contortion upon chelation of the PdCl2 fragment. Acid-promoted decomposition of 12 occurred in the presence of adventitious HCl and gaseous HCl, and the products of this decomposition were 9 and [mu2-ClPd(PPh2OH)(PPh2O)]2. In addition, chelates of 8 that contained Mo(CO)3L (L = NCMe (14a), NCEt (14b), and CO (14c)) showed that the mode of coordination was relatively insensitive to the identity of the metal. X-ray crystallography afforded views of the solid-state structures of 14b,c and, like 12, showed that the Mo(CO)3L fragment resided above the pinched-cone of the calix[4]arene. 1H NMR revealed that C-H/pi interactions existed between L (14a,b) and a phenyl ring of the coordinated phosphinite. Finally, the bis(diphenylphosphine)calix[4]arene ligand (10) readily coordinated the Mo(CO)3L species, but the reaction did not go to completion, as evidenced by 1H NMR, even after a 5 day reaction time. Data suggest that the product is similar to that observed for 12 and 14, but the incomplete reaction complicated attempts to obtain pure material and prohibited definitive assignment of the coordination array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号