首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure rotational spectra of trans- and cis-HOCO have been observed by Fourier transform microwave spectroscopy and the millimeter-wave double resonance technique, where gas phase spectra of the cis-conformer were observed for the first time. These radicals were produced in a supersonic jet by discharging a mixture gas of CO and H(2)O diluted in Ar. The molecular constants including the fine and hyperfine constants have been precisely determined for both conformers. Deuterated analogs have also been observed. The determined r(0) structures agree with these of ab initio calculations. The Fermi contact constants show a difference of the unpaired electron densities on the protons between the two conformers. Intensity of the spectrum for cis-HOCO was compared with that of trans-HOCO, leading to a conclusion that both conformers were produced nearly equally in abundance under the present experimental conditions.  相似文献   

2.
The pure rotational spectrum of the ZnCCH (X?(2)Σ(+)) radical has been measured using Fourier transform microwave (FTMW) and millimeter direct-absorption methods in the frequency range of 7-260 GHz. This work is the first study of ZnCCH by any type of spectroscopic technique. In the FTMW system, the radical was synthesized in a mixture of zinc vapor and 0.05% acetylene in argon, using a discharge assisted laser ablation source. In the millimeter-wave spectrometer, the molecule was created from the reaction of zinc vapor, produced in a Broida-type oven, with pure acetylene in a dc discharge. Thirteen rotational transitions were recorded for the main species, (64)ZnCCH, and between 4 and 10 for the (66)ZnCCH, (68)ZnCCH, (64)ZnCCD, and (64)Zn(13)C(13)CH isotopologues. The fine structure doublets were observed in all the data, and in the FTMW spectra, hydrogen, deuterium, and carbon-13 hyperfine splittings were resolved. The data have been analyzed with a (2)Σ Hamiltonian, and rotational, spin-rotation, and H, D, and (13)C hyperfine parameters have been established for this radical. From the rotational constants, an r(m) ((1)) structure was determined with r(Zn-C) = 1.9083 A?, r(C-C) = 1.2313 A?, and r(C-H) = 1.0508 A?. The geometry suggests that ZnCCH is primarily a covalent species with the zinc atom singly bonded to the C≡C-H moiety. This result is consistent with the hyperfine parameters, which suggest that the unpaired electron is localized on the zinc nucleus. The spin-rotation constant indicates that an excited (2)Π state may exist ~19,000 cm(-1) in energy above the ground state.  相似文献   

3.
The pure rotational spectrum of the PCN radical (X(3)Σ(-)) has been measured for the first time using a combination of millimeter/submillimeter direct absorption and Fourier transform microwave (FTMW) spectroscopy. In the millimeter instrument, PCN was created by the reaction of phosphorus vapor and cyanogen in the presence of an ac discharge. A pulsed dc discharge of a dilute mixture of PCl(3) vapor and cyanogen in argon was the synthetic method employed in the FTMW machine. Twenty-seven rotational transitions of PCN and six of P(13)CN in the ground vibrational state were recorded from 19 to 415 GHz, all which exhibited fine structure arising from the two unpaired electrons in this radical. Phosphorus and nitrogen hyperfine splittings were also resolved in the FTMW data. Rotational satellite lines from excited vibrational states with v(2) = 1-3 and v(1) = 1 were additionally measured in the submillimeter range. The data were analyzed with a Hund's case (b) effective Hamiltonian and rotational, fine structure, and hyperfine constants were determined. From the rotational parameters of both carbon isotopologues, the geometry of PCN was established to be linear, with a P-C single bond and a C-N triple bond, structurally comparable to other non-metal main group heteroatom cyanides. Analysis of the hyperfine constants suggests that the two unpaired electrons reside almost exclusively on the phosphorus atom in a π(2) configuration, with little interaction with the nitrogen nucleus. The fine structure splittings in the vibrational satellite lines differ significantly from the pattern of the ground state, with the effect most noticeable with increasing v(2) quantum number. These deviations likely result from spin-orbit vibronic perturbations from a nearby (1)Σ(+) state, suggested by the data to lie ~12,000 cm(-1) above the ground state.  相似文献   

4.
The conformational preferences of the simplest amine neurotransmitter 2-phenylethylamine have been investigated using molecular beam Fourier transform microwave (MB-FTMW) spectroscopy. Two new conformers have been observed together with the two previously reported by Godfrey et al. [J. Am. Chem. Soc., 1995, 117, 8204]. The (14)N nuclear quadrupole hyperfine structure has been resolved for all four conformers. Comparison of the experimental rotational and quadrupole coupling constants with those calculated theoretically provides a conclusive test for the identification of all conformers. The two most stable conformers present a gauche (folded) disposition of the alkyl-amine chain and are stabilised by a weak NH...pi interaction between the amino group and the aromatic ring. The other two conformers show an anti (extended) arrangement of the alkyl-amine chain. Tunnelling splittings have been observed in the spectrum of one of the anti conformers. The post expansion relative abundances in the supersonic jet have been also investigated and related to the conformer energies.  相似文献   

5.
The pure rotational spectrum of CuCCH in its ground electronic state (X? (1)Σ(+)) has been measured in the frequency range of 7-305 GHz using Fourier transform microwave (FTMW) and direct absorption millimeter/submillimeter methods. This work is the first spectroscopic study of CuCCH, a model system for copper acetylides. The molecule was synthesized using a new technique, discharge assisted laser ablation spectroscopy (DALAS). Four to five rotational transitions were measured for this species in six isotopologues ((63)CuCCH, (65)CuCCH, (63)Cu(13)CCH, (63)CuC(13)CH, (63)Cu(13)C(13)CH, and (63)CuCCD); hyperfine interactions arising from the copper nucleus were resolved, as well as smaller splittings in CuCCD due to deuterium quadrupole coupling. Five rotational transitions were also recorded in the millimeter region for (63)CuCCH and (65)CuCCH, using a Broida oven source. The combined FTMW and millimeter spectra were analyzed with an effective Hamiltonian, and rotational, electric quadrupole (Cu and D) and copper nuclear spin-rotation constants were determined. From the rotational constants, an r(m)(2) structure for CuCCH was established, with r(Cu-C) = 1.8177(6)?A?, r(C-C) = 1.2174(6)?A?, and r(C-H) = 1.046(2)?A?. The geometry suggests that CuCCH is primarily a covalent species with the copper atom singly bonded to the C≡C-H moiety. The copper quadrupole constant indicates that the bonding orbital of this atom may be sp hybridized. The DALAS technique promises to be fruitful in the study of other small, metal-containing molecules of chemical interest.  相似文献   

6.
The rotational spectrum of neutral phenylalanine has been recorded for the first time using laser-ablation molecular-beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Two conformers stabilized by conjugative O-H···N and N-H···π hydrogen bond interactions have been conclusively identified on the basis of experimental values of rotational and (14)N nuclear quadrupole coupling constants. The nonobservation of the rotational spectra of the other low-energy conformers has been attributed to the photofragmentation that takes place in the laser ablation process. Nuclear quadrupole coupling interactions have been used directly to determine the orientation of the amino group and to identify and experimentally characterize the N-H···π interactions.  相似文献   

7.
The ground state rotational spectra of 2-fluoropyridine and 3-fluoropyridine have been investigated using both Fourier transform microwave (FTMW) and chirped pulse Fourier transform microwave (cp-FTMW) spectroscopies. In addition to the parent species, the spectra of the (13)C and (15)N singly substituted isotopologues were recorded in the 8-23 GHz region in natural abundance. The rotational constants determined for the seven isotopologues of each were used to calculate relevant geometric parameters including the bond distances and angles of the pyridine ring backbone. The derived structures show a more pronounced deviation from the pyridine ring geometry when the fluorine substituent is ortho to nitrogen which is consistent with ab initio predictions at various levels of theory. Analysis of the (14)N hyperfine structure provided an additional source of information about the electronic structure surrounding the nitrogen atom as a function of fluorine substitution. Together, the experimental results are consistent with a bonding model that involves hyperconjugation whereby fluorine donates electron density from its lone pair into the π-system of pyridine.  相似文献   

8.
Pure rotational transitions of silicon monosulfide ((28)Si(32)S) and its rare isotopic species have been observed in their ground as well as vibrationally excited states by employing Fourier transform microwave (FTMW) spectroscopy of a supersonic molecular beam at centimetre wavelengths (13-37 GHz) and by using long-path absorption spectroscopy at millimetre and submillimetre wavelengths (127-925 GHz). The latter measurements include 91 transition frequencies for (28)Si(32)S, (28)Si(33)S, (28)Si(34)S, (29)Si(32)S and (30)Si(32)S in upsilon = 0, as well as 5 lines for (28)Si(32)S in upsilon = 1, with rotational quantum numbers J'< or = 52. The centimetre-wave measurements include more than 300 newly recorded lines. Together with previous data they result in almost 600 transitions (J' = 0 and 1) from all twelve possible isotopic species, including (29)Si(36)S and (30)Si(36)S, which have fractional abundances of about 7 x 10(-6) and 4.5 x 10(-6), respectively. Rotational transitions were observed from upsilon = 0 for the least abundant isotopic species to as high as upsilon = 51 for the main species. Owing to the high spectral resolution of the FTMW spectrometer, hyperfine structure from the nuclear electric quadrupole moment of (33)S was resolved for species containing this isotope, as was much smaller nuclear spin-rotation splitting for isotopic species involving (29)Si. By combining the measurements here with previously published microwave and infrared data in one global fit, an improved set of spectroscopic parameters for SiS has been derived which include several terms describing the breakdown of the Born-Oppenheimer approximation. With this parameter set, highly accurate rotational frequencies for this important astronomical molecule can now be predicted well into the terahertz region.  相似文献   

9.
The conformational behaviour of naturally occurring ketohexoses has been revealed in a supersonic expansion by Fourier transform microwave spectroscopy coupled with a laser ablation source. Three, two and one conformers of d ‐tagatose, d ‐psicose and l ‐sorbose, respectively, have been identified by their rotational constants extracted from the analysis of the spectra. Singular structural signatures involving the hydroxyl groups OH(1) and OH(2) have been disentangled from the intricate intramolecular hydrogen bond networks stabilising the most abundant conformers. The present results place the old Shallenberger and Kier sweetness theories on a firmer footing.  相似文献   

10.
Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water.  相似文献   

11.
The jet-cooled rotational spectrum of neutral alanine has been studied using laser-ablation molecular-beam Fourier transform microwave spectroscopy (LA-MB-FTMW). The spectra of the two most stable forms were observed in the frequency range 6-18 GHz for the parent, (15)N alanine, three single (13)C species, and four single D species. The (14)N nuclear quadrupole coupling hyperfine structures have been resolved, and their comparison with those calculated theoretically confirms unambiguously the conformer assignments. The independent structures of both conformers have been determined experimentally for the first time using r(s) and r(0) procedures. In both cases, the amino acid backbone is nonplanar. For the most stable conformer I, the COOH group adopts a cis configuration and an asymmetric bifurcated hydrogen bond is formed between the amino group and carbonyl oxygen (r(N-H(a)...O=C) = 2.70(2) A and r(N-H(b)...O=C) = 2.88(2) A). For conformer IIa, the COOH group adopts a trans configuration and is stabilized by a O-H...N hydrogen bond (r(O-H...N) = 1.96(2) A). The relative conformer abundances in the supersonic expansion have also been investigated.  相似文献   

12.
13.
The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).  相似文献   

14.
The laser-induced fluorescence spectrum of jet-cooled L-tyrosine exhibits more than 20 vibronic bands in the 35450-35750 cm(-1) region. We attribute these bands to eight conformers by using results of UV-UV hole-burning spectroscopy. These isomers are classified into four groups; each group consists of two rotational isomers that have a similar side-chain conformation but different orientations of the phenolic OH. The splitting of band origins of rotational isomers is 31, 21, 5, and 0 cm(-1) for these groups. IR-UV spectra suggest that conformers belonging to two of the four groups have an intramolecular OH...N hydrogen bond between the COOH and NH2 groups. By comparing experimental and theoretical results of L-tyrosine with those of L-phenylalanine, we propose probable conformers of L-tyrosine.  相似文献   

15.
High resolution rotational spectroscopy complemented by ab initio calculations has been used to elucidate the diastereomeric interactions in 1 : 1 complexes of ethanol, a transient chiral alcohol, hydrogen-bonded to oxirane (achiral) or trans-2,3-dimethyloxirane (DMO, 2 stereocenters). Two conformers of oxirane[dot dot dot]ethanol and three conformers of DMO[dot dot dot]ethanol have been identified, and their structures as well as their stability ordering have been determined. This completes, together with previous results on the propylene oxide...ethanol complex (N. Borho and Y. Xu, Angew. Chem., 2007, 119, 2326-2329; Angew. Chem., Int. Ed., 2007, 46, 2276-2279.), the study of a set of model systems with zero, one, and two methyl functional groups at the hydrogen bond acceptor oxirane. The dependence of the observed rotational line intensities on pressure, nozzle temperature, and different carrier gases has been investigated for the case of DMO[dot dot dot]ethanol. This provides insight into the kinetical and thermodynamical influence on the formation of different conformers. Comparison of the subtle energy differences among the complexes and within each set of conformers allows for a detailed analysis of molecular recognition in this benchmark system.  相似文献   

16.
Spin trapping, a technique used to characterize short-lived free radicals, consists of using a nitrone or nitroso compound to "trap" an unstable free radical as a long-lived aminoxyl that can be characterized by EPR spectroscopy. The resultant aminoxyl exhibits hyperfine splitting constants that are dependent on the spin trap and the free radical. Such is the case with 2,2-dimethyl-5-hydroxy-1-pyrrolidinyloxyl (DMPO-OH) and 2,2-dimethyl-5-hydroperoxy-1-pyrrodinyloxyl (DMPO-OOH) whose hyperfine splitting constants, A(N) = A(H) = 14.9 G and A(N) = 14.3 G, A(H)(beta) = 11.7 G, and A(H)(gamma) = 1.25 G, respectively, have been used to demonstrate the generation of HO(*) and O(2)(*)(-). However, to date, the source of the apparent A(H)(gamma) hyperfine splitting in DMPO-OOH is not known. We consider three possible explanations to account for the unique EPR spectrum of DMPO-OOH. The first is that the gamma-splitting arises from one of the hydrogen atoms at either carbon 3 or carbon 4 of DMPO-OOH. The second is that the gamma-splitting originates from the hydrogen atom of DMPO-OOH. The third is that the conformational properties of DMPO-R change upon going from DMPO-OH to DMPO-OOH. Experimental and theoretical chemical approaches as well as EPR spectral modeling were used to investigate which of these hypotheses may explain the asymmetric EPR spectrum of DMPO-OOH. From these studies it is shown that the 12-line EPR spectrum of DMPO-OOH results not from any proximal hydrogen, but from additional conformers of DMPO-OOH. Thus, the 1.25 G hyperfine splitting, which has been assigned as a gamma-splitting, is actually from two individual EPR spectra associated with different conformers of DMPO-OOH.  相似文献   

17.
Stable conformations of five‐member rings with the prototype cyclopentane are well‐known to exist as twist or envelope structures and are of general interest in chemistry. Here, we report on the conformational analysis of the sulfur‐containing ring 2‐methyltetrahydrothiophene studied by a combination of molecular beam Fourier transform microwave (MB‐FTMW) spectroscopy and quantum chemistry. Two twist conformers were observed, whereby highly accurate molecular parameters could be determined. In addition, the 34S‐isotopologue of the most stable conformer was assigned in natural abundances. Geometry optimizations were performed at different levels of theory and the calculated rotational constants were compared with experimental values. Two transition states optimized at the MP2/6‐311++G(d,p) level using the Berny algorithm could illustrate the intramolecular conversion between both conformers.  相似文献   

18.
Chirality recognition in the hydrogen-bonded glycidol···propylene oxide complex has been studied by using rotational spectroscopy and ab initio calculations. An extensive conformational search has been performed for this binary adduct at the MP2/6-311++G(d,p) level of theory and a total of 28 homo- and heterochiral conformers were identified. The eight binary conformers, built of the two dominant glycidol monomeric conformers, g-G+ and g+G-, were predicted to be the most stable ones. Jet-cooled rotational spectra of six out of the eight conformers were observed and unambiguously assigned for the first time. The experimental stability ordering has been obtained and compared with the ab initio predictions. The relative stability of the two dominant glycidol monomeric conformers is reversed in some cases when binding to propylene oxide. The contributions of monomeric energy, deformation energy, and binary intermolecular interaction energy to the relative stability of the binary conformers are discussed.  相似文献   

19.
Two low energy conformers of the chiral (R)-1-aminoindan molecule are identified in supersonic jet and their ground and excited states vibrational spectroscopy has been investigated by laser-induced fluorescence (LIF) excitation and single vibronic level (SVL) emission spectroscopy. Ab initio calculations confirm the existence of two lowest-energy structures, where the amino group is in equatorial position with its lone pair directed opposite to the aromatic electron cloud. Harmonic frequencies have been calculated for these two conformers at the DFT level with B3LYP functional. A low-frequency progression of 118 cm(-1) and 114 cm(-1), respectively, appears in the fluorescence excitation spectrum of the two conformers, with its ground state counterpart at approximately 147 cm(-1). It has been assigned to the puckering motion coupled with the ring flapping mode. The other calculated low-frequency mode corresponds to the puckering motion coupled with the ring twisting mode and its ground state frequency has been observed at 119 cm(-1) and 111 cm(-1) from SVL spectra. Both conformers form similar 1 : 1 water clusters, whose 0-0 transitions are shifted to the blue by 41 cm(-1) and 44 cm(-1), respectively, and whose SVL spectra are similar. Interestingly, one of the conformers seems to preferentially make complexes with (S)-methyllactate, while the other one shows selective complexation to (R)-methyllactate.  相似文献   

20.
The rotational spectra of four (GT, TT, TG, and GG) of the five possible conformers of 1-fluorobutane have been assigned by combining free jet and conventional microwave spectroscopy. The geometry optimization was performed at the MP2 (full) level of theory with the 6-31G (d) and 6-311G (d, p) basis sets and by using the B3LYP (3df, 3pd) density functional method. The relative stability of the five rotamers is calculated at the QCISD (T)/6-311G (d, p) level of theory. In spite of the fact that ab initio calculations indicated the unobserved GG' conformer to be more stable than at least one of the observed conformers it was not possible to detect its rotational spectrum. GT and TG are the most and the least stable species, respectively. The rotational spectra of several vibrational satellites of the four conformers have been studied by conventional microwave spectroscopy. The overall conformational equilibrium is governed by the two-dimensional potential energy surface of the skeletal torsions MeC-CC and FC-CC, which have been evaluated by a flexible model analysis, based on the experimental values of the relative conformational and vibrational energy spacings, and on the shifts of second moments of inertia upon conformational change and vibrational excitation. The relative energy of the fifth stable conformer (GG') was determined to be 333 cm(-1) from flexible model calculations, and to be 271 cm(-1) from the most accurate ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号