首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diruthenium azido complexes Ru(2)(DPhF)(4)N(3) (1a, DPhF = N,N'-diphenylformamidinate) and Ru(2)(D(3,5-Cl(2))PhF)(4)N(3) (1b, D(3,5-Cl(2))PhF = N,N'-bis(3,5-dichlorophenyl)formamidinate) have been investigated by thermolytic and photolytic experiments to investigate the chemical reactivity of the corresponding diruthenium nitride species. Thermolysis of 1b at ~100 °C leads to the expulsion of N(2) and isolation of Ru(2)(D(3,5-Cl(2))PhF)(3)NH(C(13)H(6)N(2)Cl(4)) (3b), in which a nitrogen atom has been inserted into one of the proximal aryl C-H bonds of a D(3,5-Cl(2))PhF ligand. A similar C-H insertion product is obtained upon thawing a frozen CH(2)Cl(2) solution of the nitride complex Ru(2)(DPhF)(4)N (2a), formed via photolysis at -196 °C of 1a to yield Ru(2)(DPhF)(3)NH(C(13)H(10)N(2)) (3a). Evidence is provided here that both reactions proceed via direct intramolecular attack of an electrophilic terminal nitrido nitrogen atom on a proximal aryl ring. Thermodynamic and kinetic data for this reaction are obtained from differential scanning calorimetric measurements and thermal gravimetric analysis of the thermolysis of Ru(2)(D(3,5-Cl(2))PhF)(4)N(3), and by Arrhenius/Eyring analysis of the conversion of Ru(2)(DPhF)(4)N to its C-H insertion product, respectively. These data are used to develop a detailed, experimentally validated DFT reaction pathway for N(2) extrusion and C-H functionalization from Ru(2)(D(3,5-Cl(2))PhF)(4)N(3). The diruthenium nitrido complex is an intermediate in the calculated reaction pathway, and the C-H functionalization event shares a close resemblance to a classical electrophilic aromatic substitution mechanism.  相似文献   

2.
[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.  相似文献   

3.
Liu B  Yin P  Yi XY  Gao S  Zheng LM 《Inorganic chemistry》2006,45(10):4205-4213
In the presence of organic templates, six diruthenium diphosphonates, namely, [H3N(CH2)3NH3]2[Ru2(hedp)2] (1), [H3N(CH2)4NH3]2[Ru2(hedp)2].4H2O (2), [H3N(CH2)5NH3]2[Ru2(hedp)2].4H2O (3), [H3N(CH2)3NH3][Ru2(hedp)(hedpH)].H2O (4), [H3N(CH2)4NH3][Ru2(hedpH(0.5))2].2H2O (5), and [H3N(CH2)5NH3]2[Ru2(hedp)2][Ru2(hedpH)2]] (6) [hedp = 1-hydroxyethylidenediphosphonate, CH3C(OH)(PO3)2] have been synthesized under hydrothermal conditions. Compounds 1-3 contain homovalent paddlewheel cores of Ru2(II,II)(hedp)2(4-) that are connected through edge-sharing of the [RuO5Ru] octahedra, resulting in infinite linear chains. Compounds 4-6 contain mixed-valent diruthenium(II,III) phosphonate paddlewheel cores of Ru2(II,III)(hedpH(n))2(3-2n)- that are connected by phosphonate oxygen atoms, forming distorted square-grid layers in 4 and 6 or a kagomé lattice in 5. Both the templates and the pH values are found to play important roles in directing the final products with particular topologies and oxidation states of the diruthenium unit. The magnetic studies show that weak antiferromagentic interactions are propagated between the homovalent diruthenium units in compounds 1-3. For compounds 4-6, weak ferromagnetic interactions are observed.  相似文献   

4.
Ruthenium complexes bearing ethylbis(2-pyridylethyl)amine (ebpea), which has flexible -C(2)H(4)- arms between the amine and the pyridyl groups and coordinates to a metal center in facial and meridional modes, have been synthesized and characterized. Three trichloro complexes, fac-[Ru(III)Cl(3)(ebpea)] (fac-[1]), mer-[Ru(III)Cl(3)(ebpea)] (mer-[1]), and mer-[Ru(II)Cl(3){η(2)-N(C(2)H(5))(C(2)H(4)py)═CH-CH(2)py}] (mer-[2]), were synthesized using the Ru blue solution. Formation of mer-[2] proceeded via a C-H activation of the CH(2) group next to the amine nitrogen atom of the ethylene arm. Reduction reactions of fac- and mer-[1] afforded a triacetonitrile complex mer-[Ru(II)(CH(3)CN)(3)(ebpea)](PF(6))(2) (mer-[3](PF(6))(2)). Five nitrosyl complexes fac-[RuX(2)(NO)(ebpea)]PF(6) (X = Cl for fac-[4]PF(6); X = ONO(2) for fac-[5]PF(6)) and mer-[RuXY(NO)(ebpea)]PF(6) (X = Cl, Y = Cl for mer-[4]PF(6); X = Cl, Y = CH(3)O for mer-[6]PF(6); X = Cl, Y = OH for mer-[7]PF(6)) were synthesized and characterized by X-ray crystallography. A reaction of mer-[2] in H(2)O-C(2)H(5)OH at room temperature afforded mer-[1]. Oxidation of C(2)H(5)OH in H(2)O-C(2)H(5)OH and i-C(3)H(7)OH in H(2)O-i-C(3)H(7)OH to acetaldehyde and acetone by mer-[2] under stirring at room temperature occurred with formation of mer-[1]. Alternative C-H activation of the CH(2) group occurred next to the pyridyl group, and formation of a C-N bond between the CH moiety and the nitrosyl ligand afforded a nitroso complex [Ru(II)(N(3))(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([8]) in reactions of nitrosyl complexes with sodium azide in methanol, and reaction of [8] with hydrochloric acid afforded a corresponding chloronitroso complex [Ru(II)Cl(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([9]).  相似文献   

5.
Ruthenium(II/III) complexes with tripodal tris(pyridylmethyl)amine ligands bearing one, two, or three pivalamide groups (MPPA, BPPA, TPPA: amide-series ligands) or neopentylamine ones (MNPA, BNPA, TNPA: amine-series ligands) at the 6-position of the pyridine ring have been synthesized and structurally characterized. The X-ray structure analyses of the single crystals of these complexes reveal that they complete an octahedral geometry with the tripodal ligand and some monodentate ligands. The amide-series ligands prefer to form a Ru(II) complex, while the amine-series ones give a Ru(III) complex. In the presence of PhIO oxidant, the catalytic activities for epoxidation of olefins, hydroxylation of alkane, and dehydrogenation of alcohol have been investigated using the six ruthenium complexes [Ru(II)(tppa)Cl(2)] (1), [Ru(III)(tnpa)Cl(2)]PF(6) (2), [Ru(II)(bppa)Cl]PF(6) (3), [Ru(III)(bnpa)Cl(2)]PF(6) (4), [Ru(II)(mppa)Cl]PF(6) (5), and [Ru(III)(mnpa)Cl(2)]PF(6) (6). Among them, the amide-series complexes, 1, 3, and 5, showed a higher epoxidation activity in comparison with the amine-series ones, 2, 4, and 6. On the other hand, the latter showed a higher reactivity for hydroxylation, allylic oxidation, and C=C bond cleavage reactions compared with the former. Such a complementary reactivity is interpreted by the character of the ruthenium-oxo species involving electronically equivalent formulas, Ru(V)=O and Ru(IV)-O.  相似文献   

6.
Ru(2)(Fap)(4)Cl and Ru(2)(Fap)(4)(NO)Cl, where Fap is the 2-(2-fluoroanilino)pyridinate anion, were synthesized, and their structural, electrochemical, and spectroscopic properties were characterized. Ru(2)(Fap)(4)Cl, which was obtained by reaction between Ru(2)(O(2)CCH(3))(4)Cl and molten HFap, crystallizes in the monoclinic space group P2(1)/c, with a = 11.2365(4) A, b = 19.9298(8) A, c = 19.0368(7) A, beta = 90.905(1) degrees, and Z = 4. The presence of three unpaired electrons on the Ru(2)(5+) core and the 2.2862(3) A Ru-Ru bond length for Ru(2)(Fap)(4)Cl are consistent with the electronic configuration (sigma)(2)(pi)(4)(delta)(2)(pi*)(2)(delta*)(1). The reaction between Ru(2)(Fap)(4)Cl and NO gas yields Ru(2)(Fap)(4)(NO)Cl, which crystallizes in the orthorhombic space group Pbca, with a = 10.0468(6) A, b = 18.8091(10) A, c = 41.7615(23) A, and Z = 8. The Ru-Ru bond length of Ru(2)(Fap)(4)(NO)Cl is 2.4203(8) A, while its N-O bond length and Ru-N-O bond angle are 1.164(8) A and 155.8(6) degrees, respectively. Ru(2)(Fap)(4)(NO)Cl can be formulated as a formal Ru(2)(II,II)(NO(+)) complex with a linear Ru-N-O group, and the proposed electronic configuration for this compound is (sigma)(2)(pi)(4)(delta)(2)(pi*)(3)(delta*)(1). The binding of NO to Ru(2)(Fap)(4)Cl leads to some structural changes of the Ru(2)(Fap)(4) framework and a stabilization of the lower oxidation states of the diruthenium unit. Also, IR spectroelectrochemical studies of Ru(2)(Fap)(4)(NO)Cl show that NO remains bound to the complex upon reduction and that the first reduction involves the addition of an electron on the diruthenium core and not on the NO axial ligand.  相似文献   

7.
The diruthenium mu2-imido mu2-methylene complex [(Cp*Ru)2(mu2-NPh)(mu2-CH2)] serves as a bifunctional scaffold for cluster synthesis, producing a mu3-imido Ru2Pt cluster [(Cp*Ru)2(mu3-NPh)(mu2-CH2)Pt(PMe3)2] on treatment with [Pt(eta2-C2H4)(PMe3)2] and a mu3-methylidyne Ru4Pd2 cluster [(Cp*Ru)2(mu2-NPh)(mu3-CH)PdCl]2 with [PdMeCl(cod)].  相似文献   

8.
The electrochemistry and spectroelectrochemistry of a novel series of mixed-ligand diruthenium compounds were examined. The investigated compounds having the formula Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl where x = 1-3 and Fap is 2-(2-fluoroanilino)pyridinate anion were made from the reaction of Ru(2)(CH(3)CO(2))(4)Cl with 2-(2-fluoroanilino)pyridine (HFap) in refluxing methanol. The previously characterized Ru(2)(Fap)(4)Cl as well as the three newly isolated compounds represented as Ru(2)(CH(3)CO(2))(Fap)(3)Cl (1), Ru(2)(CH(3)CO(2))(2)(Fap)(2)Cl (2), and Ru(2)(CH(3)CO(2))(3)(Fap)Cl (3) possess three unpaired electrons with a Ru(2)(5+) dimetal core. Complexes 1 and 2 have well-defined Ru(2)(5+/4+) and Ru(2)(5+/6+) redox couples in CH(2)Cl(2), but 3 exhibits a more complicated electrochemical behavior due to equilibria involving association or dissociation of the anionic chloride axial ligand on the initial and oxidized or reduced forms of the compound. The E(1/2) values for the Ru(2)(5+/4+) and Ru(2)(5+/6+) processes vary linearly with the number of CH(3)CO(2)(-) bridging ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl and plots of reversible half-wave potentials vs the number of acetate groups follow linear free energy relationships with the largest substituent effect being observed for the oxidation. The major UV-visible band of the examined compounds in their neutral Ru(2)(5+) form is located between 550 and 800 nm in CH(2)Cl(2) and also varies linearly with the number of CH(3)CO(2)(-) ligands on Ru(2)(CH(3)CO(2))(x)(Fap)(4-x)Cl. The electronic spectra of the singly oxidized and singly reduced forms of each diruthenium species were characterized by UV-visible spectroelectrochemistry in CH(2)Cl(2).  相似文献   

9.
A series of diruthenium(II), [Ru(2)(tidf)Cl(2)(H(2)O)(2)] x H(2)O, diiron(II) [Fe(2)(tidf)(MeOH)(4)](ClO(4))(2) and mixed ruthenium(II)-iron(II) [Ru(MeOH)(2)FeCl(H(2)O)(tidf)](ClO(4)) (tidf=a two compartment tetraiminediphenolate macrocycle) complexes were prepared and characterized by elemental analysis, FTIR, UV-vis, cyclic voltammetry and semi-empirical molecular mechanics calculations.  相似文献   

10.
Reaction of benzaldehyde semicarbazone (HL-R, where H is a dissociable proton and R is a substituent (R = OMe, Me, H, Cl, NO(2)) at the para position of the phenyl ring) with [Ru(PPh(3))(3)Cl(2)] and [Ru(PPh(3))(2)(CO2)Cl2] has afforded complexes of different types. When HL-NO(2) and [Ru(PPh(3))(3)Cl2] react in solution at ambient temperature, trans-[Ru(PPh(3))(2)(L-NO2Cl] is obtained. Its structure determination by X-ray crystallography shows that L-NO2 is coordinated as a tridentate C,N,O-donor ligand. When reaction between HL-NO2 and [Ru(PPh(3))(3)Cl2] is carried out in refluxing ethanol, a more stable cis isomer of [Ru(PPh(3))(2)(L-NO2)Cl] is obtained. The trans isomer can be converted to the cis isomer simply by providing appropriate thermal energy. Slow reaction of HL-R with [Ru(PPh(3))(2)(CO2)Cl2] in solution at ambient temperature yields 5-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes. A structure determination of 5-[Ru(PPh(3))(2)(L-NO2)(CO)Cl] shows that the semicarbazone ligand is coordinated as a bidentate N,O-donor, forming a five-membered chelate ring. When reaction between HL-R and [Ru(PPh(3))(2)(CO2Cl2] is carried out in refluxing ethanol, the 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes are obtained. A structure determination of 4-[Ru(PPh(3))(2)(L-NO2)(CO)Cl] shows that a semicarbazone ligand is bound to ruthenium as a bidentate N,O-donor, forming a four-membered chelate ring. All the complexes are diamagnetic (low-spin d(6), S = 0). The trans- and cis-[Ru(PPh(3))(2)(L-NO2)Cl] complexes undergo chemical transformation in solution. The 5- and 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes show sharp NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry of the 5-[Ru(PPh(3))(2)(L-R)(CO)Cl] and 4-[Ru(PPh(3))(2)(L-R)(CO)Cl] complexes show the Ru(II)-Ru(III) oxidation to be within 0.66-1.07 V. This oxidation potential is found to linearly correlate with the Hammett constant of the substituent R.  相似文献   

11.
Qi XB  Rice GT  Lall MS  Plummer MS  White MC 《Tetrahedron》2010,66(26):4816-942
This report describes the use of Pd(II)/bis-sulfoxide 1 catalyzed intra- and intermolecular allylic C-H amination reactions to rapidly diversify structures containing a sensitive β-lactam core similar to that found in the monobactam antibiotic Aztreonam. Pharmacologically interesting oxazolidinone, oxazinanone, and linear amine motifs are rapidly installed with predictable and high selectivities under conditions that use limiting amounts of substrate. Additionally, we demonstrate for the first time that intramolecular C-H amination processes may be accelerated using catalytic amounts of a Lewis acid co-catalyst [Cr(III)(salen)Cl 2].  相似文献   

12.
The reaction of [Ru(2)Cl(O(2)CMe)(DPhF)(3)] (DPhF=N,N'-diphenylformamidinate) with aqueous HCl leads to the substitution of the acetate ligand to give the complex [Ru(2)Cl(2)(DPhF)(3)] (1). Similar reaction of [Ru(2)(O(2)CMe)(DPhF)(3)(H(2)O)]BF(4) with aqueous HBr or HI produces [Ru(2)Br(2)(DPhF)(3)] (2), and [Ru(2)I(2)(DPhF)(3)] (3), respectively. The reaction of 1 with AgBF(4) to form the highly unsaturated unit [Ru(2)(DPhF)(3)](2+), which is isolated as [Ru(2)(BF(4))(DPhF)(3)(H(2)O)]BF(4) (4), and [Ru(2)(MeCN)(2)(DPhF)(3)](BF(4))(2) (5), is also reported. The use of AgNO(3) instead of AgBF(4) leads to [Ru(2)(NO(3))(2)(DPhF)(3)] (6). The magnetic behaviour of complexes 1-4 and 6 is intermediate between high- and low-spin configurations. A relationship between the magnetic behaviour and the visible-near-infrared (Vis-NIR) spectra is apparent. In addition, the crystal structure determinations of 2, 4.THF, and 6, have been carried out. Complexes 1-3, 5 and 6 are the first examples of open-paddlewheel structures in diruthenium chemistry. The BF(4) (-) bridging the metal centres in 4THF is activated and forms very short Ru-F bonds.  相似文献   

13.
The reaction of Ru2Cl(O2CMe)(DPhF)3 (DPhF = N,N'-diphenylformamidinate) with mono- and polycarboxylic acids gives a clean substitution of the acetate ligand, leading to the formation of complexes Ru2Cl(O2CC6H5)(DPhF)3 (1), Ru2Cl(O2CC6H4-p-CN)(DPhF)3 (2), [Ru2Cl(DPhF)3(H2O)]2(O2C)2 (3), [Ru2Cl(DPhF)3]2[C6H4-p-(CO2)2] (4), and [Ru2Cl(DPhF)3]3[C6H3-1,3,5-(CO2)3] (5). The preparation of [Ru2(NCS)(DPhF)3]3[C6H3-1,3,5-(CO2)3] (6) and {[Ru2(DPhF)3(H2O)]3[C6H3-1,3,5-(CO2)3]}(SO3CF3)3 (7) from 5 is also described. All complexes are characterized by elemental analysis, IR and electronic spectroscopy, mass spectrometry, cyclic voltammetry, and variable-temperature magnetic measurements. The crystal structure determinations of complexes 2.0.5THF and 3.THF.4H2O (THF = tetrahydrofuran) are reported. The reactions carried out demonstrate the high chemical stability of the fragment [Ru2(DPhF)3]2+, which is preserved in all tested experimental conditions. The stability of this fragment is also corroborated by the mass spectra. Electrochemical measurements reveal in all complexes one redox process due to the equilibrium Ru2(5+) <--> Ru2(6+). In the polynuclear complex 7, some additional oxidation processes are also observed that have been ascribed to the presence of two types of dimetallic units rather than two consecutive reversible oxidations. The magnetic behavior toward temperature for complexes 1-7 from 300 to 2 K is analyzed. Complexes 1-7 show low values of antiferromagnetic coupling in accordance with the molecular nature in 1 and 2 and the absence of important antiferromagnetic interaction through the carboxylate bridging ligands in 3-7, respectively. In addition, the magnetic properties of complex 7 do not correspond to any magnetic behavior described for diruthenium(II,III) complexes. The experimental data of compound 7 are simulated considering a physical mixture of S = 1/2 and 3/2 spin states. This magnetic study demonstrates the high sensitivity of the electronic configuration of the unit [Ru2(DPhF)3]2+ to small changes in the nature of the axial ligands. Finally, the energy gap between the pi and delta orbitals in these types of compounds allows the tentative assignment of the transition pi --> delta.  相似文献   

14.
Iridium-catalyzed asymmetric allylic amination of allylic carbonates with 2-allylanilines was realized. With a catalyst generated from 2 mol% of [Ir(dbcot)Cl](2) (dbcot = dibenzo[a,e]cyclooctatetraene) and 4 mol% of phosphoramidite ligand (L3), the amination products were obtained in up to 99% yield and 99% ee. Subjecting amination products to trifluoroacetyl protection and ring-closing-metathesis reaction provided an efficient synthesis of enantioenriched 2,5-dihydrobenzo[b]azepine derivatives.  相似文献   

15.
A highly selective C-H amination reaction under iron catalysis has been developed. This novel system, which employs an inexpensive, nontoxic [Fe(III)Pc] catalyst (typically used as an industrial ink additive), displays a strong preference for allylic C-H amination over aziridination and all other C-H bond types (i.e., allylic > benzylic > ethereal > 3° > 2° ? 1°). Moreover, in polyolefinic substrates, the site selectivity can be controlled by the electronic and steric character of the allylic C-H bond. Although this reaction is shown to proceed via a stepwise mechanism, the stereoretentive nature of C-H amination for 3° aliphatic C-H bonds suggests a very rapid radical rebound step.  相似文献   

16.
Reaction of the metal-metal bonded complex Ru(2)(O2CCH3)4Cl with 2-anilino-4-methylpyridine leads to the (3,1) isomer of the diruthenium(III,II) complex Ru2(ap-4-Me)4Cl, 1 while the same reaction with 2-anilino-6-methylpyridine gives the monoruthenium(III) derivative Ru(ap-6-Me)3, 2. Both compounds were examined as to their structural, electrochemical, and UV-visible properties, and the data were then compared to that previously reported for (4,0) Ru2(2-Meap)4Cl and other (3,1) isomers of Ru2(L)4Cl with similar anionic bridging ligands. ESR spectroscopy indicates that the monoruthenium derivative 2 contains low-spin Ru(III), and the presence of a single ruthenium atom is confirmed by an X-ray structure of the compound. The combined electrochemical and UV-vis spectroelectrochemical data indicate that the diruthenium complex 1 is easily converted to its Ru2(4+) and Ru2(6+) forms upon reduction or oxidation by one electron while the monoruthenium derivative 2 also undergoes metal-centered redox processes to give Ru(II) and Ru(IV) complexes under the same solution conditions. The reactivity of 1 with CO and CN- was also examined.  相似文献   

17.
A series of vinyl, aryl, acetylide and silyl complexes [Ru(R)(kappa2-MI)(CO)(PPh3)2] (R = CH=CH2, CH=CHPh, CH=CHC6H4CH3-4, CH=CH(t)Bu, CH=2OH, C(C triple bond CPh)=CHPh, C6H5, C triple bond CPh, SiMe2OEt; MI = 1-methylimidazole-2-thiolate) were prepared from either [Ru(R)Cl(CO)(PPh3)2] or [Ru(R)Cl(CO)(BTD)(PPh3)2](BTD = 2,1,3-benzothiadiazole) by reaction with the nitrogen-sulfur mixed-donor ligand, 1-methyl-2-mercaptoimidazole (HMI), in the presence of base. In the same manner, [Os(CH=CHPh)(kappa2-MI)(CO)(PPh3)2] was prepared from [Os(CH=CHPh)(CO)Cl(BTD)(PPh3)2]. The in situ hydroruthenation of 1-ethynylcyclohexan-1-ol by [RuH(CO)Cl(BTD)(PPh3)2] and subsequent addition of the HMI ligand and excess sodium methoxide yielded the dehydrated 1,3-dienyl complex [Ru(CH=CHC6H9)(kappa2-MI)(CO)(PPh3)2]. Dehydration of the complex [Ru(CH=CHCPh2OH)(kappa2-MI)(CO)(PPh3)2] with HBF4 yielded the vinyl carbene [Ru(=CHCH=CPh2)(kappa2-MI)(CO)(PPh3)2]BF4. The hydride complexes [MH(kappa2-MI)(CO)(PPh3)2](M = Ru, Os) were obtained from the reaction of HMI and KOH with [RuHCl(CO)(PPh3)3] and [OsHCl(CO)(BTD)(PPh3)2], respectively. Reaction of [Ru(CH=CHC6H4CH3-4)(kappa2-MI)(CO)(PPh3)2] with excess HC triple bond CPh leads to isolation of the acetylide complex [Ru(C triple bond CPh)(kappa2-MI)(CO)(PPh3)2], which is also accessible by direct reaction of [Ru(C triple bond CPh)Cl(CO)(BTD)(PPh3)2] with 1-methyl-2-mercaptoimidazole and NaOMe. The thiocarbonyl complex [Ru(CPh = CHPh)Cl(CS)(PPh3)2] reacted with HMI and NaOMe without migration to yield [Ru(CPh= CHPh)(kappa2-MI)(CS)(PPh3)2], while treatment of [Ru(CH=CHPh)Cl(CO)2(PPh3)2] with HMI yielded the monodentate acyl product [Ru{eta(1)-C(=O)CH=CHPh}(kappa2-MI)(CO)(PPh3)2]. The single-crystal X-ray structures of five complexes bearing vinyl, aryl, acetylide and dienyl functionality are reported.  相似文献   

18.
The title compound, [Ru(2)(O(2)CCF(3))(4)] (1), has been obtained without any exogenous ligands and crystallized by deposition from the gas phase at 170 degrees C. Its crystal structure has been determined for the first time to confirm an infinite chain motif built on axial Ru...O interactions of the diruthenium(II,II) units. The X-ray diffraction studies at variable temperatures showed no phase transitions in the range of 295-100 K but revealed a significant decrease in the volume per atom from 14.2 to 13.3 A(3). This noticeable thermal compressibility effect is discussed in connection with the solid-state packing of the [Ru(2)(O(2)CCF(3))(4)](infinity) chains. The highly electrophilic character of the diruthenium(II,II) units has been shown by the gas-phase deposition reaction of [Ru(2)(O(2)CCF(3))(4)] with an aromatic donor substrate, namely [2.2]paracyclophane (C(16)H(16)). As a result of the above reaction, a new arene adduct [Ru(2)(O(2)CCF(3))(4).C(16)H(16)] (2) has been isolated in crystalline form. It has an extended one-dimensional (1D) chain structure comprised of alternating building units and based on the rare bridging mode of [2.2]paracyclophane, [Ru(2)(O(2)CCF(3))(4).(mu(2)-eta(2):eta(2)-C(16)H(16))](infinity). The magnetic susceptibility of 1 and 2 has been measured and compared in the range of 1.8-300 K. In addition, in the course of synthesis of 1 by the carboxylate exchange reactions, a new mixed-carboxylate diruthenium(II,II) core complex [Ru(2)(O(2)CCF(3))(3)(O(2)CC(2)H(5))] (3), bearing no exogenous ligands, has also been isolated and structurally characterized. It exhibits an interesting polymeric structure in which the ruthenium(II) centers selectively form axial interdimer contacts with the O-atoms of the propionate groups only.  相似文献   

19.
The products of the reaction between CN(-) and four different diruthenium complexes of the type Ru(2)(L)(4)Cl where L = 2-CH(3)ap (2-(2-methylanilino)pyridinate anion), ap (2-anilinopyridinate anion), 2-Fap (2-(2-fluoroanilino)pyridinate anion), or 2,4,6-F(3)ap (2-(2,4,6-trifluoroanilino)pyridinate anion) are reported. Mono- and/or dicyano adducts of the type Ru(2)(L)(4)(CN) and Ru(2)(L)(4)(CN)(2) are found exclusively as reaction products when either the 2-CH(3)ap or the ap derivative is reacted with CN(-), but diruthenium complexes with formulations of the type Ru(2)(F(x)ap)(3)[mu-(o-NC)F(x-1)ap](mu-CN) or Ru(2)(F(x)ap)(4)(mu-CN)(2) (x = 1 or 3) are also generated when Ru(2)(Fap)(4)Cl or Ru(2)(F(3)ap)(4)Cl is reacted with CN(-). More specifically, four products formulated as Ru(2)(Fap)(4)(CN), Ru(2)(Fap)(4)(CN)(2), Ru(2)(Fap)(3)[mu-(o-NC)ap](mu-CN), and Ru(2)(Fap)(4)(mu-CN)(2) can be isolated from a reaction of CN(-) with the Fap derivative, but the exact type and yield of these compounds depend on the temperature at which the experiment is carried out. In the case of the F(3)ap derivative, the only diruthenium complex isolated from the reaction mixture has the formulation Ru(2)(F(3)ap)(3)[mu-(o-NC)F(2)ap](mu-CN) and this compound has structural, electrochemical, and spectroscopic properties quite similar to that of previously characterized Ru(2)(F(5)ap)[mu-(o-NC)F(4)ap](mu-CN). Both the mono- and dicyano derivatives synthesized in this study possess the isomer type of their parent chloro complexes. The Ru-Ru bond lengths of Ru(2)(ap)(4)(CN) and Ru(2)(2-CH(3)ap)(4)(CN) are longer than those of Ru(2)(ap)(4)Cl and Ru(2)(CH(3)ap)(4)Cl, respectively, and this is accounted for by the strong sigma-donor properties of the CN(-) ligand as compared to Cl(-). The Ru-C bonds in Ru(2)(ap)(4)(CN)(2) are significantly shorter than those in Ru(2)(ap)(4)(CN), thus revealing a greatly enhanced Ru-CN interaction in the dicyano adduct, a result which is also indicated by the fact that nu(CN) in Ru(2)(ap)(4)(CN)(2) is 50 cm(-1) higher than nu(CN) in Ru(2)(ap)(4)(CN). Although both (4,0) Ru(2)(ap)(4)(CN)(2) and (3,1) Ru(2)(Fap)(4)(CN)(2) possess the same formulation, there are clear structural differences between the two complexes and this can be explained by the fact that the two cyano derivatives possess a different binding symmetry of the bridging ligands. Each mono- and dicyano adduct was electrochemically investigated in CH(2)Cl(2) containing TBAP as supporting electrolyte. Ru(2)(ap)(4)(CN), Ru(2)(CH(3)ap)(4)(CN), and Ru(2)(Fap)(4)(CN) undergo one reduction and two oxidations. The two dicyano adducts of the ap and Fap derivatives are characterized by two reductions and one oxidation. The potentials of these processes are all negatively shifted in potential by 400-720 mV with respect to half-wave potentials for the same redox couples of the monocyano derivatives, with the exact value depending upon the specific redox reaction.  相似文献   

20.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号