首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new technique is presented for generating myocardial tagging using the signal intensity minima of the transition zones between the bands of 0° and 360° rotations, induced by a tandem of two adiabatic delays alternating with nutations for tailored excitation (DANTE) inversion sequences. With this approach, the underlying matrix corresponds to magnetization that has experienced 0° or 360° rotations. The DANTE sequences were implemented from adiabatic parent pulses for insensitivity of the underlying matrix to B1 inhomogeneity. The performance of the proposed tagging technique is demonstrated theoretically with computer simulations and experimentally on phantom and on the canine heart, using a surface coil for both RF transmission and signal reception. The simulations and the experimental data demonstrated uniform grid contrast and sharp tagging profiles over a twofold variation of the B1 field magnitude.  相似文献   

2.
Recoupling of homonuclear double quantum (DQ)-dipolar interactions is a useful technique for the structural analysis of molecules in solids. We have designed a series of elemental 0 degrees pulses for the recoupling sequences with the rf phase rotation about the z-axis, known as CN. The proposed 0 degrees pulses whose total flip angle >/=360 degrees provide spin rotation vectors in the xy-plane. Thus, the residual spin rotation can be canceled by rf phase rotation about the z-axis. An analysis by the coherent averaging theory showed that effective bandwidths of the recoupling sequences are limited not by the reduction in the dipolar scaling factor but by the increase in the residual spin rotation due to offset. A CN sequence with these elemental pulses provides an effective bandwidth of DQ-dipolar recoupling from ca. 0.5nu(R) to 4nu(R) for numerical simulations. Here, nu(R) is the sample spinning frequency. The 0 degrees pulses were applied to band-selective recoupling for the magnetization transfer in uniformly 13C-labeled molecules. Narrow-band recoupling enhances the magnetization transfer between spins within the effective range by decoupling the dipolar interactions between spins one of which is outside the range. The narrow band operation reduces rf field strength, which improves the CH decoupling. Increases in signal intensities by the use of the proposed 0 degrees pulses are experimentally shown for 13C-labeled amino acids.  相似文献   

3.
变延迟进动定制激发(Delays Alternating with Nutation for Tailored Excitation,DANTE)序列作为一种黑血预脉冲序列,通过连续施加小角度激发脉冲,以及结合散相梯度,使得流动物质和静态物质达到不同的稳态,从而抑制流动的血液.对于静态物质而言,施加DANTE序列后在图像等间隔的位置会出现暗条纹,暗条纹的宽度与梯度幅值和小单元持续时间乘积相关:乘积越大,暗纹宽度越小.对于动态物质而言,为达到较好的抑制效果,需要增加整个DANTE序列模块的准备时间,并且增大梯度幅值和小单元持续时间的乘积.因此,该方法对于梯度系统的要求较高,而实际梯度放大器(Gradient Amplifier,GPA)有一定的限额.在有限的GPA条件下,为使得DANTE序列具有更好抑制流动信号效果,本文在读出方向以及片层旋转两个方面进行了梯度优化,实现了更好的黑血效果.  相似文献   

4.
PurposeTo develop and optimise a 3D black-blood R2* mapping sequence for imaging the carotid artery wall, using optimal blood suppression and k-space view ordering.MethodsTwo different blood suppression preparation methods were used; Delay Alternating with Nutation for Tailored Excitation (DANTE) and improved Motion Sensitive Driven Equilibrium (iMSDE) were each combined with a three-dimensional (3D) multi-echo Fast Spoiled GRadient echo (ME-FSPGR) readout. Three different k-space view-order designs: Radial Fan-beam Encoding Ordering (RFEO), Distance-Determined Encoding Ordering (DDEO) and Centric Phase Encoding Order (CPEO) were investigated. The sequences were evaluated through Bloch simulation and in a cohort of twenty volunteers. The vessel wall Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR) and R2*, and the sternocleidomastoid muscle R2* were measured and compared. Different numbers of acquisitions-per-shot (APS) were evaluated to further optimise the effectiveness of blood suppression.ResultsAll sequences resulted in comparable R2* measurements to a conventional, i.e. non-blood suppressed sequence in the sternocleidomastoid muscle of the volunteers. Both Bloch simulations and volunteer data showed that DANTE has a higher signal intensity and results in a higher image SNR than iMSDE. Blood suppression efficiency was not significantly different when using different k-space view orders. Smaller APS achieved better blood suppression.ConclusionThe use of blood-suppression preparation methods does not affect the measurement of R2*. DANTE prepared ME-FSPGR sequence with a small number of acquisitions-per-shot can provide high quality black-blood R2* measurements of the carotid vessel wall.  相似文献   

5.
6.
Taking advantage of the long 13C T1 values generally encountered in solids, selective saturation and inversion of more than one resonance in 13C CP/MAS experiments can be achieved by sequentially applying several DANTE pulse sequences centered at different transmitter frequency offsets. A new selective saturation pulse sequence is introduced composed of a series of 90 degrees DANTE sequences separated by interrupted decoupling periods during which the selected resonance is destroyed. Applications of this method, including the simplification of the measurement of the principal values of the 13C chemical shift tensor under slow MAS conditions, are described. The determination of the aromaticity of coal using a relatively slow MAS rate is also described.  相似文献   

7.
Inversion bolus tagging MR methods were used to provide a graphic depiction of the axial velocity in three spatial dimensions for pulsatile flow through complex geometries. Visualization of the flow field was readily apparent, and a train of tagged boli were depicted providing an immediate overview of the displacement of flowing fluid over the entire pulsatile cycle. Tagging efficiency obtained using adiabatic inversion pulses was improved compared to that with a windowed sinc pulse. Results from phantom experiments on steady flow were correlated with computational fluid dynamic (CFD) simulations. The use of 3D methods reduced spatial partial volume effects, and the displacement of boli in a steady flow experiment correlated well with CFD simulations. The use of adiabatic inversion pulses resulted in sharp edged inversion regions with good retention of longitudinal magnetization. However in order to keep the pulse duration short, of the order of 2-5 ms, a rather large RF amplitude had to be used. The inversion bolus tagging method is useful in visualizing the flow field in multiple levels for pulsatile fluid flowing through complex geometries, and may be useful in fluid dynamic applications.  相似文献   

8.
Two special magnetic resonance imaging techniques were applied to the Rayleigh/Bénard problem of thermal convection for the first time. The methods were tested using a water cell with horizontal bottom and top covers kept at different temperatures with a downward gradient. Using Fourier encoding velocity imaging (FEVI) a five-dimensional image data set was recorded referring to two space dimensions of slice-selective images and all three components of the local velocity vector. On this basis, the fields of the velocity components or of the velocity magnitude were evaluated quantitatively and rendered as gray shade images. Furthermore the convection rolls were visualized with the aid of two- or three-dimensional multistripe/multiplane tagging imaging pulse sequences based on two or three DANTE combs for the space directions to be probed. Movies illustrating the fluid motions by convection in all three space dimensions were produced. It is demonstrated that the full spatial information of the convection rolls is accessible with microscopic resolution of typically 100 × 100 × 100 μm3. This resolution is effectively limited by flow displacements in the echo time, which should be well within the voxel dimension. The main perspective of this work is that the combined application of FEVI and multistripe/multiplane tagging imaging permits quantitative examinations of thermal convection for arbitrary boundary conditions and with imposed through-flow apart from the direct visualization of convective flow in the form of movies.  相似文献   

9.
We present novel Carr-Purcell-like sequences using composite pulses that exhibit improved performance in strongly inhomogeneous fields. The sequences are designed to retain the intrinsic error correction of the standard Carr-Purcell-Meiboom-Gill (CPMG) sequence. This is achieved by matching the excitation pulse with the refocusing cycle such that the initial transverse magnetization lies along the axis n(Beta) characterizing the overall rotation of the refocusing cycle. Such sequences are suitable for relaxation measurements. It is shown that in sufficiently inhomogeneous fields, the echo amplitudes have an initial transient modulation that is limited to the first few echoes and then decay with the intrinsic relaxation time of the sample. We show different examples of such sequences that are constructed from simple composite pulses. Sequences of the form 90 degrees (0)-(90 degrees (90-theta/2)-theta(180-theta/2)-90 degrees (90-theta/2))(n) with theta approximately 90 degrees and 270 degrees generate signal over a bandwidth larger than that of the conventional CPMG sequence, resulting in an improved signal-to-noise ratio in inhomogeneous fields. The new sequence 127 degrees (x,y)-(127 degrees (x)-127 degrees (-x))(n) only excites signal off-resonance with a spectrum that is bimodal, peaking at Delta omega(0)=+/-omega(1). Depending on the phase and exact timing of the first pulse, symmetric or antisymmetric excitation is obtained. We also demonstrate several new sequences with improved dependence on the RF field strength. The sequence (22.5 degrees (67.5)-90 degrees (-22.5))-(90 degrees (67.5)-45 degrees (157.5)-90 degrees (67.5))(n) has the property that the phase of the signal depends on B(1), allowing coarse B(1) imaging in a one-dimensional experiment.  相似文献   

10.
Magnetic resonance imaging (MRI) allows measurement of electric current density in an object. The measurement is based on observing how the magnetic field of the current density affects the associated spins. However, as high-field MRI is sensitive to static magnetic field variations of only the field component along the main field direction, object rotations are typically needed to image three-dimensional current densities. Ultra-low-field (ULF) MRI, on the other hand, with B0 on the order of 10–100 μT, allows novel MRI sequences. We present a rotation-free method for imaging static magnetic fields and current densities using ULF MRI. The method utilizes prepolarization pulses with adiabatic switch-off ramps. The technique is designed to reveal complete field and current-density information without the need to rotate the object. The method may find applications, e.g., in conductivity imaging. We present simulation results showing the feasibility of the sequence.  相似文献   

11.
There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques.  相似文献   

12.
The present trend in dynamic contrast-enhanced MRI is to increase the number of estimated perfusion parameters using complex pharmacokinetic models. However, less attention is given to the precision analysis of the parameter estimates. In this paper, the distributed capillary adiabatic tissue homogeneity pharmacokinetic model is extended by the bolus arrival time formulated as a free continuous parameter. With the continuous formulation of all perfusion parameters, it is possible to use standard gradient-based optimization algorithms in the approximation of the tissue concentration time sequences. This new six-parameter model is investigated by comparing Monte-Carlo simulations with theoretically derived covariance matrices. The covariance-matrix approach is extended from the usual analysis of the primary perfusion parameters of the pharmacokinetic model to the analysis of the perfusion parameters derived from the primary ones. The results indicate that the precision of the estimated perfusion parameters can be described by the covariance matrix for signal-to-noise ratio higher than ~ 20 dB. The application of the new analysis model on a real DCE-MRI data set is also presented.  相似文献   

13.
PurposeTo develop a black-blood T2* mapping method using a Delay Alternating with Nutation for Tailored Excitation (DANTE) preparation combined with a multi-echo gradient echo (GRE) readout (DANTE-GRE).Materials and methodsSimulations of the Bloch equation for DANTE-GRE were performed to optimize sequence parameters. After optimization, the sequence was applied to a phantom scan and to neck and lower extremity scans conducted on 12 volunteers at 3 T using DANTE-GRE, Motion-Sensitized Driven Equilibrium (MSDE)-GRE, and multi-echo GRE. T2* values were measured using an offset model. Statistical analyses were conducted to compare the T2* values between the three sequences.ResultsSimulation results showed that blood suppression can be achieved with various DANTE parameter adjustments. T2* maps acquired by DANTE-GRE were consistent and comparable to those acquired with multi-echo GRE in phantom experiments. In the in vivo experiments, DANTE-GRE was more comparable to multi-echo GRE than MSDE-GRE regarding the measurement of muscle T2* values.ConclusionDue to its high signal intensity retention and effective blood signal suppression, DANTE-GRE allows for robust and accurate T2* quantification, superior to that of MSDE-GRE, while overcoming blood flow artifacts associated with traditional multi-echo GRE.  相似文献   

14.
Frequency-modulated (FM) pulses that function according to adiabatic principles are becoming increasingly popular in many areas of NMR. Often adiabatic pulses can extend experimental capabilities and minimize annoying experimental imperfections. Here, adiabatic principles and some of the current methods used to create these pulses are considered. The classical adiabatic rapid passage, which is a fundamental element upon which all adiabatic pulses and sequences are based, is analyzed using vector models in different rotating frames of reference. Two methods to optimize adiabaticity are described, and ways to tailor modulation functions to best satisfy specific experimental needs are demonstrated. Finally, adiabatic plane rotation pulses and frequency-selective multiple spin-echo sequences are considered.  相似文献   

15.
Resolved NMR spectra from samples in inhomogeneous B0 and B1 fields can be obtained with the so-called "ex situ" methodology, employing a train of composite or adiabatic z-rotation RF pulses to periodically refocus the inhomogeneous broadening during the detection of the time-domain signal. Earlier schemes relied on a linear correlation between the inhomogeneous B0 and B1 fields. Here the pulse length, bandwidth, and amplitude of the adiabatic pulses of the hyperbolic secant type are adjusted to improve the refocusing for a setup with non-linear correlation. The field correlation is measured using a two-dimensional nutation experiment augmented with a third dimension with varying RF carrier frequency accounting for off-resonance effects. The pulse optimization is performed with a computer algorithm using the experimentally determined field correlation and a standard adiabatic z-rotation pulse as a starting point for the iterative optimization procedure. The shape of the z-rotation RF pulse is manipulated to provide refocusing for the conditions given by the sample-, magnet-, and RF-coil geometry.  相似文献   

16.
The NMR-MOUSE is a unilateral and mobile NMR sensor which operates with highly inhomogeneous magnetic fields. To produce a mobile NMR unit, RF excitation is sought, which can be produced with the most simple equipment, in particular nonlinear, low-power amplifiers, and to observe a free induction decay in strongly inhomogeneous fields, the excitation needs to be selective. The possibility to produce selective excitation by sequences of hard low-power radiofrequency pulses in the strongly inhomogeneous magnetic fields of the NMR-MOUSE is explored. The use of the DANTE sequence for selection of magnetization from parts of the sensitive volume was investigated for longitudinal and transverse magnetization by computer simulations and experiments. The spectra of the recorded FIDs and echo signals are in good agreement with those simulated for the excitation, which verifies the concept of the DANTE excitation. The results obtained are an important step towards a low-power operation of the NMR-MOUSE to improve its mobility.  相似文献   

17.
In healthy lung tissue, pulsed-gradient-spin-echo (PGSE) methods reveal apparent diffusion coefficients (ADC) of the order 0.20 cm2 s(-1); for diffusion times of approximately 2 ms. For these short diffusion times the ADC is only sensitive to structures approximately (2Dt)1/2 approximately 0.6mm in size. Recent work, using magnetic tagging of the longitudinal magnetization has revealed much smaller ADC values for longer length scales. In this work, the in vivo ADC from within the air-spaces, was measured using a new technique. The signal from a series of images was analyzed from a slice that was repeatedly imaged. Diffusion tends to "top-up" the non-renewable polarization within the slice, which leads to a non-exponential decay in image signal. Image data were compared to 1D finite-difference simulations of diffusion to calculate a long range ADC value. The results yield values of the order 0.034 cm2 s(-1), which are nearly an order of magnitude smaller than those reported by PGSE measurements at shorter diffusion times.  相似文献   

18.
A class of chemical-shift-selective (CHESS) water suppression (WS) schemes is presented in which the characteristic frequency-domain excitation profiles of "adiabatic" full-passage (AFP) RF pulses are utilized for frequency-selective excitation of the water resonance. In the proposed WS schemes, dubbed WASHCODE, hyperbolic secant (HS) pulses were used as the AFP pulses. Besides the high immunity of WS efficiency toward B(1) inhomogeneity, these sequences also exhibit extraordinary insensitivity to the dispersion of the water T(1) relaxation times. The actual performance of the proposed WS schemes was achieved in particular by optimizing the frequency offsets of WS HS pulses and the time intervals between them. To reduce the RF power requirements of these WS sequences for in vivo applications, HS pulses with the minimum possible frequency bandwidths were employed, which also substantially reduced the adverse effects on the observed proton MR spectra. The proposed WS schemes were evaluated by simulations based on the Bloch equations. Several WS sequences which looked particularly promising were verified experimentally on the human brain on a 3 T MR scanner using very short echo-time STEAM for volume selection and a standard single-loop surface coil for both signal transmission and reception. Routinely, water-suppression factors ranging from 2000 to 4000 were achieved in vivo without additional adjustment of parameters for individual subjects and without violating legal safety limits.  相似文献   

19.
We propose a method of slice selection in solid-state MRI by combining DANTE selective excitation with magic-echo (ME) line narrowing. The DANTE RF pulses applied at the ME peaks practically do not interfere with the ME line narrowing in the combined ME DANTE sequence. This allows straightforward tailoring of the slice profile simply by introducing an appropriate modulation, such as a sinc modulation, into the flip angles of the applied DANTE RF pulses. The utility of the method has been demonstrated by preliminary experiments performed on a test sample of adamantane.  相似文献   

20.
During adiabatic excitation, the nuclear magnetization in the transverse plane is subject to T(2) (spin-spin) relaxation, depending on the pulse length τ. Here, this property is exploited in a method of measuring T(2) using the ratio of NMR signals acquired with short and long-duration self-refocusing adiabatic pulses, without spin-echoes. This Dual-τ method is implemented with B(1)-insensitive rotation (BIR-4) pulses. It is validated theoretically with Bloch equation simulations independent of flip-angle, and experimentally in phantoms. Dual-τT(2) measurements are most accurate at short T(2) where results agree with standard spin-echo measures to within 10% for T(2) ≤ 100 ms. Dual-τ MRI performed with a long 0° BIR-4 pre-pulse provides quantitative T(2) imaging of phantoms and the human foot while preserving desired contrast and functional properties of the rest of the MRI sequence. A single 0° BIR-4 pre-pulse can provide T(2) contrast-weighted MRI and serve as a "T(2)-prep" sequence with a lower B(1) requirement than prior approaches. Finally, a Tri-τ experiment is introduced in which both τ and flip-angle are varied, enabling measurement of T(2), T(1) and signal intensity in just three acquisitions if flip-angles are well-characterized. These new methods can potentially save time and simplify relaxation measurements and/or contrast-weighted NMR and MRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号